
ConvReLU++: Reference-based Lossless Acceleration of
Conv-ReLU Operations on Mobile CPU
Rui Kong∗

kongrui@sjtu.edu.cn
Shanghai Jiao Tong University

Shanghai, China

Yuanchun Li†
Institute for AI Industry Research (AIR), Tsinghua

University
Beijing, China

Yizhen Yuan
Institute for AI Industry Research (AIR), Tsinghua

University
Beijing, China

Linghe Kong†
Shanghai Jiao Tong University

Shanghai, China

ABSTRACT
Many activation values of Convolutional Neural Networks (CNNs)
are zeros due to ReLU (Rectified Linear Unit), one of the most com-
mon activation functions used in modern neural networks. Since
ReLU outputs are zero for all negative inputs, existing CNN accel-
eration approaches estimate zero outputs to skip redundant com-
putation, which has to sacrifice accuracy for efficiency and leads to
dilemma trade-offs and cockamamie configuration. In this paper, we
introduce a lossless acceleration method ConvReLU++ for CNN in-
ference on mobile devices, which accurately detects and skips zero-
outputs for speedup without failures. The key to early negative de-
tection is adopting reference-based upper-bounds calculation. This
ensures that as soon as the intermediate results become negative,
the final results are guaranteed to be negative. Upon detection, the
remaining computation can be skipped and the following ReLU out-
put can be simply set to zero. We rigorously prove the losslessness
property of ConvReLU++, analyze the theoretical FLOPs reduction,
and show the compatibility of our method with vector-level paral-
lelism on mobile platforms. We implement ConvReLU++ in popular
mobile inference frameworks and evaluate it on common deep vi-
sion tasks. The results demonstrate that ConvReLU++ can achieve
2.90% to 8.91% latency reduction over the original inference frame-
work on edge devices without sacrificing accuracy. Our code can
be found at https://github.com/GAIR-team/conv_relu_plus_plus.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Computing methodologies→Machine learning.

∗This work was done while Rui Kong was an intern at the Institute for AI Industry
Research (AIR), Tsinghua University.
†Corresponding authors: Yuanchun Li (liyuanchun@air.tsinghua.edu.cn), Linghe Kong
(linghe.kong@sjtu.edu.cn). Yuanchun Li is also affiliated with Shanghai AI Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’23, June 18–22, 2023, Helsinki, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0110-8/23/06. . . $15.00
https://doi.org/10.1145/3581791.3596831

KEYWORDS
CNN inference, lossless acceleration, early negative detection, mo-
bile CPU

ACM Reference Format:
Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong. 2023. ConvReLU++:
Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile
CPU. In The 21st Annual International Conference on Mobile Systems, Appli-
cations and Services (MobiSys ’23), June 18–22, 2023, Helsinki, Finland. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3581791.3596831

1 INTRODUCTION
CNNs [26] are widely used in many computer vision tasks, such as
optical character recognition [28, 33], object tracking [4, 22, 48, 54],
industrial defect detection [49, 52] and medical image analysis
[3, 41]. Deploying CNNs to edge devices (such as mobile phones,
smart cameras, satellites, and robot arms) has become an increasing
need due to various reasons including latency requirements, privacy
concerns, and unavailable/unstable network connections [31, 50].
CPU is the most widely-used target hardware in these deployments
due to its wide availablity and high compatibility [2, 5, 13, 15, 27].

The execution of typical CNNs requires a lot of computing power
and energy. To alleviate the problem, various CNN inference ac-
celeration approaches such as model compression [8, 44], domain-
specific processors [42, 47], and system optimization [40, 55], etc.,
have been developed to execute CNNs more efficiently.

To optimize CNN inference on edge devices, we seek an opportu-
nity for saving computation and latency from ReLU, a widely used
activation function for CNNs due to its practicality. A nice property
of the Conv-ReLU (Convolution layer followed by ReLU activation)
structure is its high output sparsity, i.e., the output of Conv-ReLU
may contain a large portion of zeros. Specifically, the ReLU acti-
vation function will convert all negative values in the output of
Convolution layer to zeros. It means that the computation cost to
obtain the precise negative values in the Convolution operation
may be wasted. Although such wasted computation may not in-
duce too much overhead on high-performance machines where the
dense matrix operations are highly optimized, it can be significant
on the resource-limited edge and mobile devices.

Our method is based on the insight that judging whether the out-
put of a vector multiplication operation is negative can be faster than
actually executing it. Thus, the vector multiplication operations before

https://github.com/GAIR-team/conv_relu_plus_plus
https://doi.org/10.1145/3581791.3596831
https://doi.org/10.1145/3581791.3596831

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

Figure 1: The high-level idea of ConvReLU++. In the Conv-
ReLU structure, we can skip negative-output vector multi-
plications (i.e., dot products between input patches x𝑖, 𝑗 and
convolution weights w𝑘) with the help of carefully selected
references.

a ReLU activation can be skipped if their output values are foreseen
negative. We call such cases of anticipating negative-value output
without actual computation as foreseen output sparsity. Specifically,
in the common Conv-ReLU structure, the interaction between a con-
volution filter and its receptive field is a vector multiplication opera-
tion where the optimization can be applied. Meanwhile, the limited
parallelism and flexible instruction sets on mobile CPUs make it fea-
sible to achieve actual speedups by skipping these negative-output
computations.

Prior work has proposed various ways to identify and skip such
redundant multiplications [6, 24, 46, 53, 56], but they are either lossy
or only applicable in specific scenarios (e.g., continuous inference
with video content). The key to achieving acceleration on general
vision tasks with foreseen output sparsity is identifying negative-
output operations with low overhead and high success rate.

We introduce a reference-based method to identify and reduce
unnecessary vector multiplications in Conv-ReLU structures for
general vision tasks.

First, given a Conv kernel and its input patches to be multi-
plied, we perform a fast hash-based clustering to get a set of ref-
erence patches that are representative in the feature map. The dot
products between the reference patches and the Conv kernel are
pre-computed for comparison later. Then we calculate a tight upper-
bound of the dot product between the Conv kernel and other input
patches by comparing them with the reference patches. Finally, we
identify the unnecessary (negative-output) multiplications and skip
them in the convolution operation to reduce computational cost.
The high-level idea is illustrated in Figure 1. All steps are designed
to be compatible with vector-level parallelism, which can utilize
advanced SIMD intrinsics on mobile platforms (e.g., ARM NEON).

ConvReLU++ is implemented in ncnn [34] and TFLM (Tensorflow
Lite for Microcontrollers) [11], two widely-used mobile deep learn-
ing frameworks. We also show that other similar structures (e.g.,
Conv-BN-ReLU) and similar activation functions (e.g., ReLU6) can
be easily supported by extending our technique. Since our method
is an operator-level optimization, we only need to modify the Conv-
ReLU kernel in the frameworks. The models developed with the
framework can be seamlessly executed without modification.

We evaluate our methods on image classification and object
detection tasks with common datasets (ImageNet, TSRD, MNIST-
ROT, Industrial Images, COCO, and PnPLO) and models (ResNet50,
MobileNet, VGG16, Faster R-CNN, SSD, etc.). The results show that
our methods can achieve up to 43.77% end-to-end FLOPs reduction
on these tasks, constantly outperforming the original inference
framework and strong baselines.

Our work makes the following research contributions:
• We introduce an operator-level lossless acceleration method
for Conv-ReLU structures. Our approach is lossless, compat-
ible with parallel computation, applicable to general vision
inference tasks, and does not require model training.

• We design a novel hash-based clustering method for input
reference selection and a lightweight upper-bound calcula-
tion method for redundant vector multiplication detection.

• We prove the losslessness of our method and demonstrate
its effectiveness of FLOPs reduction and inference speedup
on common tasks and real devices. Our code will be open-
sourced.

2 BACKGROUND AND CHALLENGES
2.1 Preliminaries on Conv-ReLU Structures
Convolution neural networks (CNNs) are widely used in various
vision inference tasks such as image classification, object detection,
and semantic segmentation. Due to the remarkable performance
achieved with a fairly small amount of parameters, it is also the
default choice for intelligent mobile/edge vision applications.

Conv-ReLU structures (i.e., convolutional layers followed by
ReLU activation) are common in popular CNN models, which are
used to convert the input image or feature map to higher-level
features. Suppose 𝑙W is a 2D convolution layer with input feature
map x, weight W ∈ R𝑅×𝑆×𝐶×𝐾 , and bias b ∈ R𝐾 , where 𝑅 × 𝑆 is
the convolution kernel size and 𝐶 and 𝐾 are the sizes of input and
output channels, respectively. We use y to represent the output
of the Conv-ReLU layer. The element at location (𝑖, 𝑗) in the 𝑘-th
channel of y can be written as

y𝑖, 𝑗,𝑘 = ReLU

(
𝑅−1∑︁
𝑟=0

𝑆−1∑︁
𝑠=0

𝐶−1∑︁
𝑐=0

x𝑖+𝑟,𝑗+𝑠,𝑐 ·W𝑟,𝑠,𝑐,𝑘 + b𝑘

)
= ReLU

(
x𝑖, 𝑗 ·w𝑘

)
,

(1)

where x𝑖, 𝑗 and w𝑘 are vectors of length (𝐶𝑅𝑆 + 1) obtained by
flattening the sub-matrix of x and W at corresponding indices,
given by

x𝑖, 𝑗 =
[
x𝑖, 𝑗,0, x𝑖, 𝑗,1, . . . , x𝑖+𝑅−1, 𝑗+𝑆−1,𝐶−1, 1

]
w𝑘 =

[
W0,0,0,𝑘 ,W0,0,1,𝑘 , . . . ,W𝑅−1,𝑆−1,𝐶−1,𝑘 , b𝑘

]
,

(2)

where we append the bias parameter b𝑘 to the last of w𝑘 and 1 to
the last of x𝑖, 𝑗 for simplicity.

Therefore, the whole computation in a Conv-ReLU structure can
be seen as a batch of long-vector multiplications, each of which
computes an element in y, followed by a ReLU operation that con-
verts all negative products to zeros. Since the vector multiplications
are independent of each other, they can execute in parallel on multi-
processor architectures.

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Figure 2: The number of zero-output FLOPs in each Conv-
ReLU layer of VGG16 by feeding 5000 random images in
ImageNet.

Figure 3: Similarity between input patches of Conv-ReLU is
common in the input image (a), across images in a batch (b),
and in the feature map (c). Similar patches are marked in
green boxes.

2.2 Data Patterns of Conv-ReLU
We further analyze the input and output data patterns of Conv-
ReLU structures by testing them on real vision inference tasks.

High sparsity in the output. According to Equation 1 and
Equation 2, computing each element y𝑖, 𝑗,𝑘 of the output matrix
of a Conv-ReLU layer requires a multiplication between two long
vectors. However, the precise vector product is not used if the value
is negative due to the ReLU operation. Since calculating whether
y𝑖, 𝑗,𝑘 is positive or negative is relatively easier than actually calcu-
lating it, the computational cost of the long vector multiplication
x𝑖, 𝑗 ·w𝑘 can potentially be reduced if we can infer the sign of y𝑖, 𝑗,𝑘
with smaller cost.

The ratio of potentially reducible computation is related to the
output sparsity of the Conv-ReLU operation (i.e., the portion of
zeros in the output matrix of each Conv-ReLU layer). Figure 2
shows the amount and portion of floating-point operations (FLOPs)
the produce zeros in each Conv-ReLU layer of VGG model. We can
notice that the sparsity ratio and the portion of computation related
to the sparse output are both high (53.29% ∼ 93.43%), meaning that
there is a great potential for acceleration.

High similarity between input patches. As mentioned in
Section 2.1, a Conv-ReLU operation can be viewed as a combination
of many vector multiplications between a fixed Conv weight vector
and many input patches at different locations. In a typical vision
inference pass, the input patches of a Conv-ReLU structure may be
similar or even identical with each other.

As shown in Figure 3, the similarity between input patches can
be easily found in a single image, across different images, and in
intermediate feature maps.

Patch similarities are common in most real-world applications,
especially in high-resolution vision tasks, such as people tracking,
medical diagnosis, material defect detection, etc. We have found
that many previous approaches [35, 46, 53, 56] also utilize such
patch similarity for deep learning acceleration.

2.3 Opportunity and Challenges
The high sparsity of output and high similarity between input
patches in the Conv-ReLU structure bring us the opportunity to
achieve lossless acceleration.

Specifically, if we can identify the negative-output vector mul-
tiplications in Conv-ReLU without calculating them, we have the
opportunity to achieve lossless acceleration by skipping the unnec-
essary multiplications. Formally, suppose we have a function 𝜙 that
calculates the upper-bound of a vector multiplication operation
x𝑖, 𝑗 ·w𝑘 .

y𝑖, 𝑗,𝑘 = 𝜙 (x𝑖, 𝑗 ,w𝑘) = 𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 (x𝑖, 𝑗 ·w𝑘),

where the function 𝜙 , the calculation of y𝑖, 𝑗,𝑘 can be written as

y𝑖, 𝑗,𝑘 =

{
0, if y𝑖, 𝑗,𝑘 ≤ 0
ReLU

(
x𝑖, 𝑗 ·w𝑘

)
, otherwise.

The computation of Conv-ReLU structures can be reduced if the
upper-bound calculation function 𝜙 is more lightweight than the
vector multiplication and the portion of x𝑖, 𝑗 that has 𝜙 (x𝑖, 𝑗 ,w𝑘) ≤
0 is high. Wakatsuki et al. [46] introduce such an upper-bound
calculation function that can be used in continuous video inference
scenarios. Specifically, they use the input patch difference between
successive video frames to calculate the upper-bound:

x𝑖, 𝑗 ·w𝑘 = x𝑡−1𝑖, 𝑗 ·w𝑘 +
(
x𝑖, 𝑗 − x𝑡−1𝑖, 𝑗

)
·w𝑘

≤ x𝑡−1𝑖, 𝑗 ·w𝑘 + ||x𝑖, 𝑗 − x𝑡−1𝑖, 𝑗 | | × | |w𝑘 | |,
(3)

where x𝑡−1
𝑖, 𝑗

is the input patch at the same location of x𝑖, 𝑗 in the last
frame. Calculating the upper-bound with Equation 3 is lightweight
since x𝑡−1

𝑖, 𝑗
· w𝑘 has been computed in the last frame, | |w𝑘 | | is

constant, and | |x𝑖, 𝑗 − x𝑡−1
𝑖, 𝑗

| | can be reused for different kernels in
an inference pass. However, their method can only be applied to
video streams and requires the video content to be relatively static.
The inference cost may even increase if the inter-frame difference
is high.

In general vision inference tasks, using the last frame for com-
parison is not feasible, but the similarity between input patches
of Conv-ReLU brings us another opportunity - we can let some
input patches be the references for other similar input patches in
the same forward pass. However, using this to achieve lossless ac-
celeration is non-trivial, and there are three difficulties that have
to be addressed:

(1) How to select the references in a single inference pass. The
references must be useful and the selection must be efficient
to achieve acceleration.

(2) How to effectively detect and skip unnecessary computations
based on the selected references.

(3) How to retain the parallelism of Conv-ReLU operation, so
that the acceleration method can be compatible with mobile
SIMD architectures.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

Figure 4: The vision inference system equipped with our
method. Our method can be seamlessly integrated into the
inference engine as an operator kernel.

3 OUR APPROACH: CONVRELU++
We introduce ConvReLU++, a lossless acceleration method for mo-
bile deep vision tasks. The main idea of our method is to skip
unnecessary long-vector multiplications in Conv-ReLU operations
based on the similarity between input patches. Specifically, we in-
troduce a hash-based method to efficiently identify reference input
patches, and a tight upper-bound calculation method to identify
unnecessary vector multiplications. The whole solution is designed
in compatibility with vector-level parallelism, which can map to
actual latency reduction on mobile and edge platforms.

Our method can be transparently integrated into existing deep
learning inference frameworks by replacing the Conv-ReLU kernel,
as shown in Figure 4. As a result, our method has the key advantages
that (1) no effort is required by the application developers and there
will be no accuracy drop, and (2) the method is applicable to general
CNN-based vision tasks as long as the model contains Conv-ReLU
structures.

3.1 Overall Procedure
The overview of the Conv-ReLU operation optimized with Con-
vReLU++ is shown in Figure 5 and the pseudocode is shown in
Algorithm 1. Similar to the original Conv-ReLU kernel, the input of
ConvReLU++ kernel is the unfolded input image (or feature map),
where each row is an input patch to be multiplied with the Conv
kernel weight.

First, we introduce a patch hashing method to cluster similar
input patches into groups. The clustering is efficiently achieved
by directly computing the cluster indices 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 for all input
patches with a lightweight hash function patch_hash (line 1).

Then we select the cluster centroids as the references (denoted as
𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠) and the remained patches are denoted 𝑛𝑜𝑛-𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠
(line 2-3). The Conv outputs of the references (i.e., the dot prod-
ucts between the reference patches and the Conv kernel) are pre-
computed before other input patches (line 5-7).

Next, for each non-reference input patch, x𝑖, 𝑗 and Conv filter
w𝑤 , ConvReLU++ calculates the upper-bound of their dot product

Algorithm 1: The procedure of the Conv-ReLU operation
in ConvReLU++.
Input: Convolution layer input x, layer weightW, hash

function 𝐻 , pre-computed weight slice magnitudes
w_MAG

Output: Conv-ReLU layer output y
1 cluster_id = 𝑟𝑜𝑢𝑛𝑑 (_ × 𝑝𝑎𝑡𝑐ℎ_ℎ𝑎𝑠ℎ(x))
2 references = [all cluster centroid indices]
3 non-references = [the remaining indices]
4 @parallelizable
5 for (𝑖, 𝑗) in references do
6 for 𝑘 = 0 → 𝐾 − 1 do
7 y𝑖, 𝑗,𝑘 = x𝑖, 𝑗 ·w𝑘

8 @parallelizable
9 for (𝑖, 𝑗) in non-references do
10 Get reference indice (𝑖 ′, 𝑗 ′) of cluster cluster_id𝑖, 𝑗
11 Get pre-computed x𝑟𝑒 𝑓

𝑖, 𝑗
= x𝑖′, 𝑗 ′ and y𝑟𝑒 𝑓

𝑖, 𝑗
= y𝑖′, 𝑗 ′

12 𝛿 = | |x𝑖, 𝑗 − x𝑟𝑒 𝑓
𝑖, 𝑗

| |
13 for 𝑘 = 0 → 𝐾 − 1 do
14 Calculate 𝜙 (𝛿,w𝑘) with | |𝛿 | | and w_MAG𝑘

15 y𝑖, 𝑗,𝑘 = 𝑦
𝑟𝑒 𝑓

𝑖, 𝑗
+ 𝜙 (𝛿,w𝑘)

16 if y𝑖, 𝑗,𝑘 ≤ 0 then
17 y𝑖, 𝑗,𝑘 = 0
18 else
19 y𝑖, 𝑗,𝑘 = x𝑖, 𝑗 ·w𝑘

y𝑖, 𝑗,𝑘 . The upper-bound calculation relies on a reference input x𝑟𝑒 𝑓
𝑖, 𝑗

and its pre-computed dot product with the same Conv filter 𝑦𝑟𝑒 𝑓
𝑖, 𝑗

(line 10-15, discussed in Section 3.3). The reference x𝑟𝑒 𝑓
𝑖, 𝑗

we used
here is the patch vector similar to x𝑖, 𝑗 , which lies in the same cluster
with x𝑖, 𝑗 .

Finally, each time before actually computing x𝑖, 𝑗 ·w𝑘 (line 19)
, ConvReLU++ determines whether to skip the long-vector mul-
tiplication based on the calculated upper-bound y𝑖, 𝑗,𝑘 (line 14).
If y𝑖, 𝑗,𝑘 ≤ 0 (line 16), we can foresee that x𝑖, 𝑗 · w𝑘 ≤ 0 and
𝑅𝑒𝐿𝑈 (x𝑖, 𝑗 ·w𝑘) = 0, such that we can directly set y𝑖, 𝑗,𝑘 = 0without
affecting the accuracy (line 17). Otherwise, we calculate the vector
multiplication x𝑖, 𝑗 ·w𝑘 to obtain the true value of y𝑖, 𝑗,𝑘 (line 19).

The final output of the Conv-ReLU operation y is the combina-
tion of the reference outputs, zeros produced by the skipped vector
multiplications, and the results of non-skippable vector multiplica-
tions.

Next subsections will introduce the key steps in this procedure
in more detail.

3.2 Hash-based Reference Selection
In the ConvReLU++ operator kernel, the first step is to select a set
of reference input patches that will be compared with other input
patches later for unnecessary operation detection.

The reference selection should meet several goals. First, the
references should be representative of all input patches to ensure

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Figure 5: The overall procedure of the Conv-ReLU operation in ConvReLU++.

they are effective in later comparison. Second, the selection must be
efficient, with the overhead much smaller than the corresponding
Conv-ReLU computation. Third, the number of selected references
should be controllable, since too many references would introduce
a large overhead and too few references might be less effective.

Intuitively, a way to find representative inferences from a large
set of input patches is clustering. Similar patches can be grouped
together and cluster centroids can be selected as the references.
However, applying traditional clustering method like k-means [17]
to reference selection is infeasible since it requires to do an intensive
comparison between input patches, which is too time-consuming
at runtime.

Instead, we attempt to direct partition the input patches into
groups through hashing. Specifically, we design a hash function
patch_hash that maps each input patch to a hash id, and the input
patches with the same hash id belong to the same cluster. Our
method is similar to Locality Sensitive Hashing (LSH), but ours is
more efficient as our hash function directly yields the cluster id
with one step, instead of computing and transforming multiple bits
in traditional LSH. We observe that the convolution kernels are able
to extract input features, where similar input patches have similar
output values. To make the hash function efficient, we convert the
output values of the mean convolution kernel to integers as the
hash indices. The selection of cluster centroid is not that critical,
and we pick the first one as the centroid for simplicity. The detailed
design is introduced below.

First, since the hash function is used in the Conv-ReLU kernel,
we propose to directly use a lightweight Conv layer as the hash
function. Suppose the shape of the original Conv kernel is of shape
𝑅 × 𝑆 ×𝐶 × 𝐾 , where 𝑅 × 𝑆 is the kernel size and 𝐶 and 𝐾 are the
input and output channel sizes. The Conv kernel shape of the hash
function is set to 𝑅 ×𝑆 ×𝐶 × 1, so that the hash function can predict
one value for each input patches in x.

The effect of the hash function is equivalent to performing a
linear transformation for each input patch x𝑖, 𝑗 , i.e.,

𝑝𝑎𝑡𝑐ℎ_ℎ𝑎𝑠ℎ(x𝑖, 𝑗) = 𝑤ℎ𝑎𝑠ℎ · x𝑖, 𝑗 ,

where𝑤ℎ𝑎𝑠ℎ is a vector with the same length as an unfolded Conv
filter w𝑘 . The weight of𝑤ℎ𝑎𝑠ℎ is set to the mean of all Conv filters
in the current Conv-ReLU structure so that the distance between
the patch_hash values can reflect the similarity between the input
patches and between their corresponding output values.

The output of patch_hash is a float number. We further convert
it to a cluster id through scaling and rounding:

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑𝑖, 𝑗 = 𝑟𝑜𝑢𝑛𝑑 (_ × 𝑝𝑎𝑡𝑐ℎ_ℎ𝑎𝑠ℎ(x𝑖, 𝑗)),

where _ is a hyperparameter to control the cluster size. With this
conversion, the similar input patches will have the same 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑖𝑑 .

Finally, we select the first input patch in each cluster as the clus-
ter centroid, which is used as the reference patch for other patches
in the same cluster. We save the mapping between the input patches
and the cluster ids and the mapping between the cluster ids and
the cluster centroids so that the reference for each input patch can
be efficiently retrieved with 𝑂 (1) complexity. Meanwhile, the cal-
culation of hash values only costs 1/𝐶 computation where 𝐶 is the
output channel size of Conv-ReLU. As a result, our design achieves
the goal of effectiveness and efficiency in reference selection.

3.3 Reference-based Bound Calculation
The goal of bound calculation in our system is to predict whether
the dot product between an input patch and a Conv filter is negative
so that the multiplication is skippable without accuracy sacrifice.

Our upper-bound calculation is based on

y𝑖, 𝑗,𝑘 = x𝑖, 𝑗 ·w𝑘 ≤ y𝑟𝑒 𝑓
𝑖, 𝑗,𝑘

+ 𝜙 (x𝑖, 𝑗 − x𝑟𝑒 𝑓
𝑖, 𝑗

,w𝑘), (4)

where x𝑖, 𝑗 is an input patch, and x𝑟𝑒 𝑓
𝑖, 𝑗

and y𝑟𝑒 𝑓
𝑖, 𝑗

are the input and
output of its reference. Thus, we precompute the Conv outputs for
all reference input patches before this step.

The key to using Equation 4 to calculate the upper-bound is to
design the function 𝜙 , which is used to calculate the upper-bound
of the scalar product between x𝑖, 𝑗 − x𝑟𝑒 𝑓

𝑖, 𝑗
and w𝑘 . Let us abbreviate

x𝑖, 𝑗 − x𝑟𝑒 𝑓
𝑖, 𝑗

to 𝛿 for simplicity.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

The upper-bound function proposed in ConvReLU++ is:
𝜙 (𝛿,w𝑘) =𝛿 [𝐼diff-sub] ·w𝑘 [𝐼diff-sub]

+ | |𝛿 | | × | |w𝑘 [𝐼𝑐diff-sub] | |,
(5)

where 𝐼diff-sub is a small subset of vector indices and 𝐼𝑐diff-sub is
its complement. 𝛿 [𝐼diff-sub], w𝑘 [𝐼diff-sub], and | |w𝑘 [𝐼𝑐diff-sub] | | are
subvectors of 𝛿 and w𝑘 sliced by the corresponding indices. Next,
we will show how and why Equation 5 gives a tight upper-bound
of 𝛿 ·w𝑘 .

First, by comparing the signs of the elements in 𝛿 and w𝑘 , we
can obtain two subsets of vector indices 𝐼all. 𝐼same is the indices
where elements have the same sign, and 𝐼diff is the indices where
the signs are different. i.e.,

𝐼same = {𝑖 | 𝛿 [𝑖] ×w𝑘 [𝑖] > 0},

𝐼diff = {𝑖 | 𝛿 [𝑖] ×w𝑘 [𝑖] ≤ 0}.
Then the dot product 𝛿 ·w𝑘 can be divided into two parts, including
a positive part (the dot product of two same-sign subvectors) and a
non-positive part (the dot product of two different-sign subvectors).
Thus, we have

𝛿 ·w𝑘 =𝛿 [𝐼same] ·w𝑘 [𝐼same] + 𝛿 [𝐼diff] ·w𝑘 [𝐼diff]
≤||𝛿 [𝐼same] | | × | |w𝑘 [𝐼same] | | + 𝛿 [𝐼diff] ·w𝑘 [𝐼diff] .

Comparing the signs of all elements of𝛿 withw𝑘 is time-consuming.
In practice, we can only compare a small number (denoted as 𝐸,
we set 𝐸 = 6 by default) of indices where the elements of w𝑘 have
the largest magnitudes. Suppose 𝐼diff-sub ⊆ 𝐼diff is a small subset of
different-sign indices found by comparing the signs of 𝐸 largest-
magnitude elements in w𝑘 with the corresponding elements in 𝛿 ,
and 𝐼𝑐diff-sub = 𝐼all − 𝐼diff-sub is the set of other indices. Then we have

𝛿 ·w𝑘 ≤||𝛿 [𝐼𝑐diff-sub] | | × | |w𝑘 [𝐼𝑐diff-sub] | |
+ 𝛿 [𝐼diff-sub] ·w𝑘 [𝐼diff-sub] .

(6)

Since 𝐼𝑐diff-sub is a long list of indices, calculating the magnitudes of
subvectors indexed by 𝐼𝑐diff-sub (i.e., | |𝛿 [𝐼

𝑐
diff-sub] | | and | |w𝑘 [𝐼

𝑐
diff-sub] | |)

is still heavy. Fortunately, we can precompute | |w𝑘 [𝐼𝑐diff-sub] | | with
different combinations of 𝐼diff-sub (the number of combinations
would not be large because 𝐸 is small) at offline. Moreover, we can
replace | |𝛿 [𝐼𝑐diff-sub] | | with its upper-bound | |𝛿 | | in Equation 6, i.e.,

𝛿 ·w𝑘 ≤ ||𝛿 | | × | |w𝑘 [𝐼𝑐diff-sub] | | + 𝛿 [𝐼diff-sub] ·w𝑘 [𝐼diff-sub]
= 𝜙 (𝛿,w𝑘) .

The upper-bound in Equation 3 adopted by Wakatsuki et al. [46]
can be written as

𝜙base (𝛿,w𝑘) = | |𝛿 | | × | |w𝑘 | |. (7)

Clearly, our upper-bound 𝜙 (𝛿,w𝑘) is tighter than 𝜙base (𝛿,w𝑘)
because | |𝛿 | | × | |w𝑘 [𝐼𝑐diff-sub] | | < | |𝛿 | | × | |w𝑘 | | and 𝛿 [𝐼diff-sub] ·
w𝑘 [𝐼diff-sub] is negative.

To sum up, we can obtain 𝜙 (𝛿,w𝑘) with a lightweight sign com-
parison over a small number of indices (𝐼diff-sub), a dot product
between two short vectors (𝛿 [𝐼diff-sub] ·w𝑘 [𝐼diff-sub]), a vector mag-
nitude calculated shared by all convolution kernels (| |𝛿 | |), and sev-
eral offline weight magnitude calculations (| |w𝑘 [𝐼𝑐diff-sub] | |). Finally,
we can estimate the upper-bound of x𝑖, 𝑗 · w𝑘 according to Equa-
tion 4.

3.4 Theoretical Performance Analysis
We analyze the theoretical speedup of our method in this subsec-
tion. First, we consider the process of calculating the activation
values of all convolution channels at a specific location (𝑖, 𝑗). The
original convolution operation will require𝐾 vector multiplications
between the input vector x𝑖, 𝑗 and the convolution kernel weights
{w1,w2, ...,w𝐾 }. Both x𝑖, 𝑗 and w𝑘 have the length 𝐿 = (𝐶𝑅𝑆 + 1).
Thus, the total FLOPs of computing the convolution layer output
at location (𝑖, 𝑗) with the conventional kernel is 𝐾𝐶𝑅𝑆 .

Reduced Computation. Suppose 𝑝𝜙 is the portion of convo-
lution kernels whose dot product with the input x𝑖, 𝑗 has a non-
positive upper-bound (i.e., y𝑖, 𝑗,𝑘 ≤ 0), then our Conv-ReLU kernel
will skip 𝑝𝜙𝐾 vector multiplications when computing the activa-
tion values {y𝑖, 𝑗,1, y𝑖, 𝑗,2, ..., y𝑖, 𝑗,𝐾 }. The number of reduced FLOPs
is 𝑝𝜙𝐾𝐶𝑅𝑆 .

Induced Overhead. The overhead of ConvReLU++ comes from
patch clustering and upper-bound calculation.

The computation FLOPs of 𝑝𝑎𝑡𝑐ℎ_ℎ𝑎𝑠ℎ(x𝑖, 𝑗) = 𝑤ℎ𝑎𝑠ℎ · x𝑖, 𝑗 is
𝑁𝐶𝑅𝑆 , where 𝑁 is the total number of x𝑖, 𝑗 . Line 2-3 takes no extra
computation since it can be finished within line 1. Thus, the total
overhead FLOPs of line 1-3 is 𝑁𝐶𝑅𝑆 .

Line 10-11 takes no extra computation sincewe have already com-
puted them within line 1-3. The FLOPs of line 12 is 𝐶𝑅𝑆 which can
be viewed as a vector product. Line 14-15 computes upper-bound
y𝑖, 𝑗,𝑘 where takes 𝐸 sign comparisons to determine the different-
sign indices 𝐼diff-sub and about 𝐸 FLOPs to evaluate 𝜙 . Thus, the
total overhead FLOPs of line 10-15 is 𝑁 (𝐶𝑅𝑆 + 𝐾𝐸).

ConvReLU++ can achieve speedup if the reduced computation
is larger than the induced overhead, i.e.,

𝑝𝜙𝐾𝐶𝑅𝑆 −𝐶𝑅𝑆 − (𝐶𝑅𝑆 + 𝐾𝐸) > 0.

In a regular inference pass, the ratio of skippable convolution
kernels 𝑝𝜙 can easily satisfy 𝑝𝜙𝐾 > 2 with carefully selected ref-
erences, and 𝐾𝐸 is negligible since 𝐸 are small numbers. Thus, the
speedup can be easily achieved.

The speedup ratio is determined by the quality of selected ref-
erences and input data characteristics. The references used in our
approach are the input patches with high similarity. Thus, Con-
vReLU++ can perform well on images with large same-content
areas. In the ideal case, if we could find a perfect reference x𝑟𝑒 𝑓

𝑖, 𝑗
for

each input vector x𝑖, 𝑗 with | |x𝑖, 𝑗 − x𝑟𝑒 𝑓
𝑖, 𝑗

| | ≈ 0, the ratio of skippable
vector multiplications 𝑝𝜙 in our optimized kernel will reach the
output sparsity ratio in each Conv-ReLU layer.

4 MOBILE PLATFORM INTEGRATION
The convolution operation is executed as a matrix multiplication in
most inference frameworks, as shown in Figure 6. The input image
(or feature map) is unfolded to a matrix with the im2col technique
[9], where each row is an input patch x𝑖, 𝑗 as described in Equation 2.

The Conv-ReLU operator kernel of ConvReLU++ requires skip-
ping certainmultiplications during the convolution operation, which
breaks the integrity of matrix multiplication. Thus, it can hardly
achieve meaningful acceleration on high-performance machines
where the dense matrix multiplication is highly optimized (e.g.,
with cuBLAS [36]).

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Figure 6: A convolution operation is executed as a matrix
multiplication between the unfolded input matrix x and un-
folded convolution kernel matrix W.

However, ConvReLU++ is especially suitable for mobile and edge
devices with limited computational abilities and/or less parallel
hardware architectures. Next, we describe how ConvReLU++ can
be integrated into such devices.

Devices with limited parallelism. There are lots of embedded
devices with little or no parallel computing ability [2, 5, 13]. They
typically have only one processor without advanced instruction
sets. On such devices, the convolution operator is a serial imple-
mentation, in which the floating point operations are executed
sequentially. Our algorithm can be easily integrated into such de-
vices according to Algorithm 1, where we only need to convert the
extra vector operations to their naive implementations and insert
them into the original operator.

Devices with vector-level parallelism. Some more advanced
edge devices (e.g., ARM-based Android smartphones) have the abil-
ity of vector-level parallelism, where the instruction set supports
vector operations and multiple processors can perform the vector
operations in parallel. Specifically, ARM has many vector regis-
ters for SIMD operations. For example, vmul_f32(vec1, vec2, res) is
used for long-vector multiplications, and vaddvq_f32(res) is used to
accumulate the result vector.

In ConvReLU++ kernel, there are lots of independent long-vector
multiplications x𝑖, 𝑗 · w𝑘 within loops. Thus, we use the ARM in-
trinsics to implement the vector multiplications. Besides, we use
multi-processing techniques (e.g., OpenMP [10]) to concurrently
perform the vector multiplications to achieve further acceleration.
Because the operations in ConvReLU++ kernel (including reference
precomputing, bound calculation, etc.) don’t interface with each
other, we can effectively utilize the parallel abilities on such devices.

Devices with sparse-optimized hardware. There are also
some domain-specific processors that are proposed to support skip-
pable matrix multiplication [1, 43, 51, 56, 57]. The main goal of these
custom architectures is to accelerate SDDMM (Sampled Dense-
Dense Matrix Multiplication [19]), in which the matrix multipli-
cation is represented as 𝑂 = 𝑀1𝑀2

⊙
𝑆 , where 𝑀1 and 𝑀2 are

input matrices, and 𝑆 is a boolean indicator matrix. 𝑂 [𝑖] [𝑗] is not
calculated where 𝑆 [𝑖] [𝑗] is False.

ConvReLU++ is perfectly compatible with these custom archi-
tectures. Since the skippable Conv-ReLU operation in ConvReLU++
can be written as 𝑅𝑒𝐿𝑈 (xW

⊙
𝑆), where the values of 𝑆 at the

indices with skippable multiplication are set to 0.

5 IMPLEMENTATION
We implement ConvReLU++ in two inference frameworks includ-
ing ncnn [34], and TensorFlow Lite for Microcontrollers (TFLM for

short) [11], which are the popular inference framework for mobile
devices and tiny embedded devices respectively. In ncnn, we first
calculate all w_MAG in advance before inference, which saves some
time and space overhead. During inference, to efficiently implement
the reference selection and upper-bound computations mentioned
in Algorithm 1, we precompute all the 𝛿 and store references in a
contiguous array to ensure CPU cache acceleration for subsequent
upper-bound computations. For computing vector multiplications,
we use SIMD acceleration and multi-threading to compute the
upper-bounds and vector multiplications simultaneously. The im-
plementation in TFLM is similar to in ncnn, except that the main
logic is implemented as a serial version of Algorithm 1.

Next, we highlight several special cases we faced and handled
during the implementation.

Supporting BatchNorm (BN). There are lots of Conv-BN-ReLU
structures in modern CNNs, which are not directly supported using
ConvReLU++. However, we can slightly adapt ConvReLU++ to sup-
port these structures. Specifically, we convert the Conv-BN-ReLU
structure to the Conv-ReLU structure by merging the Convolution
and BN into a single Convolution operation

y𝑖, 𝑗,𝑘 = ReLU
(
BN

(
x𝑖, 𝑗 ·w𝑘 + b𝑘

))
= ReLU

(
x𝑖, 𝑗 ·w𝑘 + b𝑘 − `√

𝜎2 + 𝜖
𝛾 + 𝛽

)
= ReLU

(
x𝑖, 𝑗 ·w′

𝑘
+ b′

𝑘

)
,

where w′
𝑘
=

𝛾√
𝜎2+𝜖

w𝑘 and b′
𝑘
=

b𝑘−`√
𝜎2+𝜖

𝛾 + 𝛽 . Thus, we can replace
all Conv-BN-ReLU structures with Conv-ReLU that can be directly
accelerated by ConvReLU++.

Supporting ReLU6. ReLU6 is a modification of the ReLU where
we limit the activation to a maximum size of 6. This is due to
increased robustness when used with low-precision computation.
Many CNN models designed for mobile platforms (e.g., MobileNet)
utilize this structure. We support ReLU6 by adjusting the way to
compute y𝑖, 𝑗,𝑘 , where we can use both the upper-bounds and the
lower bounds to determine skippable vector multiplications.

y𝑖, 𝑗,𝑘 =

0, if y𝑖, 𝑗,𝑘 ≤ 0
6, if y𝑖, 𝑗,𝑘 ≥ 6
ReLU

(
x𝑖, 𝑗 ·w𝑘

)
, otherwise,

where y𝑖, 𝑗,𝑘 is the upper-bound and y𝑖, 𝑗,𝑘 is the lower bound. Fol-
lowing the procedure of upper-bound calculation in ConvReLU++,
we can similarly calculate the lower bound by

y𝑖, 𝑗,𝑘 = x𝑖, 𝑗 ·w𝑘 = x𝑟𝑒 𝑓
𝑖, 𝑗

·w𝑘 −
(
x𝑟𝑒 𝑓
𝑖, 𝑗

− x𝑖, 𝑗
)
·w𝑘

≤ x𝑟𝑒 𝑓
𝑖, 𝑗

·w𝑘 − 𝜙 (x
𝑟𝑒 𝑓

𝑖, 𝑗
− x𝑖, 𝑗 ,w𝑘).

6 EVALUATION
We evaluate ConvReLU++ to answer the following research ques-
tions:

(1) Is our approach able to reduce FLOPs of CNN inference?
(2) How effective is each component in our system? e.g., hash-

based reference selection and reference-based bound calcu-
lation.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

(3) Does the mobile platform integration bring actual latency
reduction?

(4) What’s the memory overhead of our method?

6.1 Experimental Setup
We select common and real-world deep vision tasks to evaluate our
method, in comparison with closely-related baselines.

Tasks, datasets, and models. We focus on image classification
tasks and object detection tasks, which are the most common tasks
in literature and practice. The datasets we used include standard
datasets, such as MNIST-ROT (an extended version of MNIST) [25],
ImageNet [12], TSRD (Traffic Sign Recognition Database) [58], and
industrial defect detection dataset (Industrial Images for short) [45].
Regarding the models, we include common and state-of-the-art
CNN models including ResNet, VGG, FasterRCNN, MobileNet, etc.
for complex tasks and a vanilla two-layer CNN model (VanillaCNN
for short) for simple tasks. We use the standard architectures and
pre-trained weights for the models without any customization. The
detailed list is shown in Table 1.

Baselines. It is difficult for us to find a baseline that is both
lossless and generic. Instead, we compare with SparseNN [56] and
SeerNet [6], which are representative lossy approaches that also
propose to skip unnecessary or unimportant computation in Conv-
ReLU structures. Wakatsuki et al. [46] is lossless, but it supports
video scenario only. Thus we just compare our upper-bound cal-
culation method 𝜙 with theirs (𝜙𝑏𝑎𝑠𝑒). Unfortunately, we couldn’t
find the source code of these baseline methods, thus we implement
them by ourselves following their papers. Since supporting differ-
ent models with the baseline methods requires tremendous effort,
we compare with them the vanilla two-layer CNN model and the
MNIST-ROT dataset.

Platforms.We also test the latency reduction performance of
ConvReLU++ on real edge devices, including an Arduino Nano
board (Arm Cortex-M4) and an Android smartphone (Snapdragon
865), which are based on TFLM [11] and ncnn [34] frameworks
respectively.

6.2 Inference FLOPs Reduction
We first evaluate the effectiveness of inference FLOPs reduction,
which is a direct indicator of how much computational cost can be
saved. The results are shown in Table 1.

First of all, ConvReLU++ achieves lossless FLOPs reduction on
all tasks, with the reduction ratio ranging from 1.87% to 43.77%
according to the results. Given the fact that our method is a lossless
approach, we believe our method is useful for a wide range of deep
vision tasks.

The computation reduction ratio of our method is highly depen-
dent on both the dataset and the model. We first analyze the impact
of datasets. The highest FLOPs reduction (43.77%) is achieved on
the image classification task with the MNIST-ROT dataset. The
Industrial Images and TSRD datasets also produce high FLOPs re-
duction ratios of 24.91% and 12.16%. However, the FLOPs reduction
is less significant (lower than 6%) on ImageNet. A similarity of the
datasets on which ConvReLU++ performs well is that the images
contain large areas of similar pixels (e.g., background, object sur-
face, etc.), which helps our method to select betters references and

skip more vector multiplications. Many other real-world data have
similar properties as MNIST images, such as medical images and
space images. We believe ConvReLU++ can also perform well on
such tasks.

Then we analyze the impact of model architectures on the ef-
fectiveness of ConvReLU++. On the ImageNet dataset, ResNet50,
VGG16, and SqueezeNet achieve different ratios of FLOPs reduc-
tion ranging from 2.62% to 5.28%. On the Industrial Images dataset,
ResNet50 achieves 11.81% FLOPs reduction and VGG16 achieves
24.91% FLOPs reduction. Our method constantly performs better
with VGG16 than ResNet50. One reason is that VGG16 contains a
larger portion of Conv-ReLU structures where our method can be
applied. Besides, ResNet50 model is deeper, and the spatial locality
in deeper layers is low as the features are mixed together, which
degrades the ability of our method in detecting skippable vector
multiplications.

The types of vision tasks do not pose unique challenges for our
approach. The FLOPs reduction patterns we observed on object
detection tasks are similar to those on the classification tasks. How-
ever, since the ratio of Conv-ReLU structures is lower in detection
models, the speedup ratio is not as high as on classification tasks.

We further conduct a breakdown analysis of the FLOPs reduction
in each Conv-ReLU layer. The results are shown in Figure 7, where
we can observe that almost all Conv-ReLU layers can benefit from
our methods for FLOPs reduction. However, the ratio of FLOPs
reduction is generally lower in deeper layers, which explains the
reason why our method performs better on shallower networks.

Comparison with the lossy method. Table 2 shows the com-
putation reduction performance of our methods and the baselines
(SparseNN & SeerNet). The baselines have to trade accuracy for
efficiency. Although they can sometimes achieve higher speedup, it
usually leads to higher accuracy loss, even on simple datasets like
MNIST-ROT. We suspect the accuracy loss may become even higher
on more complicated tasks. Moreover, finding the optimal tradeoff
between accuracy and latency is also difficult and time-consuming
for developers.

6.3 Breakdown Analysis
We further analyze the effectiveness of each individual component
in ConvReLU++.

Reference Selection. We compare our hash-based reference
selection method with two baselines, including a stride selection
strategy that uses the input patch x𝑖, 𝑗 as the reference for patches
between {x𝑖, 𝑗−𝑘 and x𝑖, 𝑗+𝑘 , ...} (𝑘 is the stride size) and a random
strategy that selects random input patches as the references. Table 3
shows the relative FLOPs achieved by ConvReLU++ using the three
different reference selection strategies.

The best reference effectiveness (56.23% relative FLOPs, aka.
43.77% FLOPs reduction) is achieved by our hash-based strategy
with a reference ratio of 6.72%. This is due to the ability of our
method to cluster similar patches through efficient hashing. The
random reference selection strategy is not effective as it can only
produce 10% FLOPs reduction with different reference ratios. The
stride strategy is better because it utilizes some simple spatial lo-
cality patterns, although the effectiveness is still much lower than
ours.

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Table 1: Models and tasks used in our experiments and the average FLOPs reduction ratio achieved by our approach. The #
Layers column is the number of Conv-ReLU layers compared with the total number of layers (excluding non-parametric layers).

ID Task Model # Layers Dataset Original GFLOPs Our GFLOPs

1 Classification VanillaCNN 2/2 MNIST-ROT [25] 0.02 0.01 (-43.77%)
2 Classification ResNet50 [18] 33/50 ImageNet [12] 8.24 8.02 (-2.62%)
3 Classification VGG16 [32] 13/16 ImageNet [12] 15.50 14.87 (-4.08%)
4 Classification SqueezeNet [21] 12/18 ImageNet [12] 0.35 0.33 (-5.28%)
5 Classification ResNet50 [18] 33/50 Industrial Images [45] 24.22 21.40 (-11.81%)
6 Classification VGG16 [32] 13/16 Industrial Images [45] 90.64 68.06 (-24.91%)
7 Detection FasterRCNN [39] 8/17 COCO [29] 23.50 21.81 (-7.21%)
8 Detection FasterRCNN [39] 8/17 TSRD [58] 23.50 20.64 (-12.16%)
9 Detection MobileNet-SSD [20] 47/60 COCO [29] 1.23 1.16 (-5.44%)
10 Detection MobileNet-SSD [20] 47/60 TSRD [58] 1.23 1.10 (-10.82%)

Figure 7: Layer-wise FLOPs reduction achieved by ConvReLU++ on different models and tasks.

The reference ratio (the portion of input patches used as ref-
erences) of our method is controlled by the hash scaling factor _
(Section 3.2). We can see that the FLOPs reduction effectiveness is
not significantly affected by the reference ratio, but there exists an
optimal reference ratio. Other reference ratios higher or lower than
it may lead to higher reference precomputing overhead or lower
success rate of negative output detection.

We also visualize the cluster indices generated by ConvReLU++
at different layers in Figure 8. We can see that similar patches are
likely to have the same cluster indices, which demonstrates the ef-
fectiveness of our patch clustering. Meanwhile, we observe that the
similarity between cluster indices is lower for high-variance images
and in deeper layers, which can explain the difference of FLOPs
reduction performance across models and datasets in Section 6.2.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

Table 2: Relative FLOPs of our method & lossy baselines on
MNIST-ROT dataset with Vanilla CNN model. r is a hyper-
parameter of SparseNN. ∗ means that SeerNet needs to run a
whole 4-bit quantized model.

Method Test Accuracy Relative FLOPs

SparseNN with r=1 14.82% 17.23%
SparseNN with r=2 42.35% 35.75%
SparseNN with r=4 72.88% 68.31%
SparseNN with r=9 93.34% 144.09%

SeerNet 90.12% 27.44% + 100.00% (4-bit)∗
Ours 93.34% 56.23%

Vanilla CNN 93.34% 100.00%

Table 3: Relative FLOPs achieved by ConvReLU++ with dif-
ferent reference selection strategies. Results obtained with
VanillaCNN and MNIST-ROT.

Method Relative FLOPs Reference Ratio

hash selection 56.23% 6.72%
hash selection 58.24% 1.09%
hash selection 61.09% 12.37%
stride selection 78.42% 50.00%
stride selection 79.19% 33.33%
stride selection 83.44% 25.00%
random selection 88.19% 5.00%
random selection 90.12% 15.00%
random selection 89.35% 25.00%

Figure 8: Visualization of the cluster indices generated by
ConvReLU++ in each Conv-ReLU layer of ResNet50. Image
#1 comes from ImageNet and #2 is from Industrial Images.

Bound Calculation Effectiveness. Since the upper-bound cal-
culation, 𝜙 is a crucial component in our approach (Equation 5),
we evaluate it separately by checking whether it yields a tighter
bound than the normal upper-bound 𝜙𝑏𝑎𝑠𝑒 (Equation 7). As shown
in Figure 9, the mean value of 𝜙/𝜙𝑏𝑎𝑠𝑒 among all convolution oper-
ations in ResNet50 is 0.95, and the minimum is 0.17. Based on the
distribution, our method gets a tighter bound than 𝜙𝑏𝑎𝑠𝑒 in most
cases and thus can skip more vector multiplication operations. The
right side of Figure 9 compares the end-to-end FLOPs reduction
obtained by using ConvReLU++ with different bound estimation
methods. Our upper-bound estimation method leads to about 1.5%

Figure 9: The distribution of 𝜙

𝜙𝑏𝑎𝑠𝑒
ratios in all convolution

operations (left) and relative FLOPs achieved by our method
with different bound calculation methods (right), obtained
with ResNet50 on Industrial Images.

higher computation reduction than the normal bound calculation
method.

6.4 Latency Reduction
We further examine whether the FLOPs reduction of ConvReLU++
can map to actual latency reduction on real edge devices. Specif-
ically, we test five inference tasks on two representative devices
including an Android smartphone and an Arduino Nano board. As
shown in Table 4, using ConvReLU++ can lead to latency reduction
on both the smartphone and the Arduino board, demonstrating the
applicability of ConvReLU++ on real-world edge devices.

However, we also observe that the latency reduction is smaller
than the FLOPs reduction (i.e., the theoretical upper bound of la-
tency reduction). There are several reasons for this. First, precom-
puting and retrieving the reference inputs and outputs during the
Conv-ReLU operation may break the sequential pattern of memory
access, which leads to a higher cache miss rate and slows down
the computation. Second, the inference framework runs with multi-
threading parallelism on the smartphone, the skippable vectormulti-
plications in ConvReLU++ are unable to fully utilize the parallelism
as dense matrix multiplication. Third, the model used on Arduino
Nano is int8-quantized, but the hash function in our ConvReLU++
kernel is based on the float version model. Some of the above is-
sues can be mitigated with engineering efforts, which we leave
for future work. Nevertheless, the latency reduction is at a similar
level as FLOPs reduction, which demonstrates the compatibility of
ConvReLU++ with mobile platforms.

6.5 System Memory Overhead
ConvReLU++ does not have a time overhead since it requires no
training or preparation. The overhead of ConvReLU++ is mainly
on the memory because it requires extra space to maintain the
pre-computed references. We measure the memory taken by the
inference frameworks on the devices. As shown in Table 4, the
memory overhead of ConvReLU++ is almost negligible (less than
2.60%). This is a reasonable result since ConvReLU++ only needs to
retain a small number of input patches (i.e., the cluster centroids)
in the memory, which is minimal as compared with the memory
taken by the model and feature maps.

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

Table 4: Latency reduction and memory overhead of ConvReLU++ on real edge devices.

Device Model + Dataset Original Lat. Our Lat. Reduced FLOPs Original Mem. Our Mem.

Smartphone ResNet50+Industrial Images 4.86s 4.47s (-8.02%) -11.81% 148.40M 152.30M (+2.6%)
Smartphone MobileNet-SSD+TSRD 1.08s 1.01s (-6.44%) -10.82% 83.10M 84.20M (+1.32%)
Smartphone SqueezeNet+ImageNet 0.24s 0.23s (-2.90%) -5.28% 43.50M 44.30M (+1.84%)
Arduino MobileNet+PnPLO 1.46s 1.33s (-8.91%) -9.54% 198.23K 200.61K (+1.20%)
Arduino MobileNet+COCO 1.46s 1.36s (-7.16%) -8.37% 198.23K 200.61K (+1.20%)

7 DISCUSSION
Implementation on accelerators. While we prototype the infer-
ence stage of ConvReLU++ on CPU, we expect that it can be ported
to and benefit from hardware accelerators. Taking GPU as an ex-
ample, our method is capable of improving the inference speed by
reducing the number of GPU threads needed for computing output
feature maps.

Compatibility with other optimizations. Modern inference
framework is very complicated with various other optimization
techniques (packing, Winograd, etc.) [23, 34]. Our current imple-
mentation does not consider these optimizations, but we expect
supporting them to be feasible since our kernel is parallelizable by
design.

Further accelerationwith training. Since ConvReLU++mainly
benefits from the similarity between input patches, it exists an op-
portunity to increase the similarity through training, which can
help to skip more negative-output vector multiplications.

Limitations. Firstly, the proposed acceleration method has dif-
ferent effects on multi-modal data, where continuous data with
strong continuity properties in the natural world, such as images,
will have better acceleration effects, while the acceleration effect
of text-based data is not as significant. Secondly, the acceleration
effect is more evident for shallower convolution layers due to the
spatial locality properties of the shallow features, which limits the
applicability of the method to deeper networks. The method also
does not support other activation functions like sigmoid. Finally,
the proposed conv-relu kernel may lose its acceleration effect in
certain scenarios, which needs to be further investigated. These
limitations highlight the need for further research to develop more
effective acceleration methods that apply to a wider range of net-
work structures and data types.

8 RELATEDWORK
Recent work on exploiting negative-outputs detections for CNN
acceleration can coarsely be divided into two groups, including
approximate methods and rigorous methods.

Approximate negative-outputs detection for single image
CNN inference. Before our work, many approaches are proposed
to utilize the output sparsity of Conv-ReLU structures. For example,
SparseNN [56] uses a low-rank approximation of original matrix
multiplications as the negative-output detector. SeerNet [6] quan-
tizes the original parameters, conducts low-bit multiplications, and
uses the low-bit outputs for negative-output detection.

USPE [43], PredictiveNet [30] and ComPreEND [24] propose
splitting values statistically based on significance for early negative

detection. LCCL [14] utilizes collaborative layers to early detect and
skip negative outputs calculations. However, the reduced computa-
tions in these approaches are not completely unnecessary, which
may influence the prediction results.

Approximate negative-outputs detection for continuous
video CNN inference. In video analysis tasks, there are natu-
rally more opportunities to skip unnecessary computations due
to the temporal locality. For example, Skip-Conv [16] proposes
to skip negative residual areas in video frames and only update
value within non-negative residual areas. DeepCache [53], Recur-
rent Residual Module (RRM) [37] and CBinfer [7] cache input and
output feature maps from previous frames at every convolutional
layer to process the differences, increase sparsity and then accumu-
late the outputs together with dense outputs from previous frames.
DeltaCNN [38] performs all operations sparsely, by comparing only
the input features (camera image) against the complete previous
input, propagating the sparse feature updates throughout all layers.

Rigorous negative-outputs detection for continuous video
CNN inference. Wakatsuki et al. [46] propose the first lossless
accelerationmethod that only leverages temporal locality to identify
negative-outputs areas for continuous vision inference. Our method
can losslessly accelerate general vision tasks (both single image and
continuous video) via rigorous negative-outputs detection without
failures. Many other system optimization techniques that do not
change the model structures or operators are also able to achieve
lossless acceleration. Our work is orthogonal with them.

9 CONCLUSION
In this paper, we propose to losslessly skip vector multiplications
in Conv-ReLU layers via foreseen output sparsity. Specifically, Con-
vReLU++ utilizes pre-computed references to identify negative-
output vector multiplications that can be skipped. The main tech-
niques in our approach include a hash-based reference selection
mechanism, a tight upper-bound calculation method, and an end-to-
end implementation on mobile platforms. Experiments have shown
that ConvReLU++ achieves 2.62% to 43.77% computation reduction
on various common deep vision tasks. We have also implemented
themethod on popular mobile inference frameworks including ncnn
and TFLM, which can be used by edge AI application developers
transparently without modifying the model.

ACKNOWLEDGMENTS
This work is supported by the National Key R&D Program of China
(2022YFF0604501) and the National Natural Science Foundation of
China (62272261). We thank the anonymous reviewers and shep-
herds for their valuable suggestions.

MobiSys ’23, June 18–22, 2023, Helsinki, Finland Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong

REFERENCES
[1] Vahideh Akhlaghi, Amir Yazdanbakhsh, Kambiz Samadi, Rajesh K. Gupta, and

Hadi Esmaeilzadeh. 2018. SnaPEA: Predictive Early Activation for Reducing
Computation in Deep Convolutional Neural Networks. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 662–673. https:
//doi.org/10.1109/ISCA.2018.00061

[2] Cesare Alippi, Simone Disabato, and Manuel Roveri. 2018. Moving Convolutional
Neural Networks to Embedded Systems: The AlexNet and VGG-16 Case. In
2018 17th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). 212–223. https://doi.org/10.1109/IPSN.2018.00049

[3] Maria Baldeon-Calisto and Susana K. Lai-Yuen. 2020. AdaResU-Net: Multiobjec-
tive adaptive convolutional neural network for medical image segmentation. Neu-
rocomputing 392 (2020), 325–340. https://doi.org/10.1016/j.neucom.2019.01.110

[4] Ali Borji, Simone Frintrop, Dicky N. Sihite, and Laurent Itti. 2012. Adaptive
object tracking by learning background context. In 2012 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops. 23–30. https:
//doi.org/10.1109/CVPRW.2012.6239191

[5] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide
Rossi, and Francesco Conti. 2021. DORY: Automatic End-to-End Deployment
of Real-World DNNs on Low-Cost IoT MCUs. IEEE Trans. Comput. 70, 8 (2021),
1253–1268. https://doi.org/10.1109/TC.2021.3066883

[6] Shijie Cao, Lingxiao Ma, Wencong Xiao, Chen Zhang, Yunxin Liu, Lintao Zhang,
Lanshun Nie, and Zhi Yang. 2019. SeerNet: Predicting Convolutional Neural
Network Feature-Map Sparsity Through Low-Bit Quantization. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 11208–11217.
https://doi.org/10.1109/CVPR.2019.01147

[7] Lukas Cavigelli and Luca Benini. 2020. CBinfer: Exploiting Frame-to-Frame
Locality for Faster Convolutional Network Inference on Video Streams. IEEE
Transactions on Circuits and Systems for Video Technology 30, 5 (2020), 1451–1465.
https://doi.org/10.1109/TCSVT.2019.2903421

[8] Ziqian Chen, Shiqi Wang, Dapeng Oliver Wu, Tiejun Huang, and Ling-Yu Duan.
2018. FromData to Knowledge: Deep LearningModel Compression, Transmission
and Communication. In Proceedings of the 26th ACM International Conference
on Multimedia (Seoul, Republic of Korea) (MM ’18). Association for Computing
Machinery, New York, NY, USA, 1625–1633. https://doi.org/10.1145/3240508.
3240654

[9] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/
abs/1410.0759

[10] L. Dagum and R. Menon. 1998. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering 5, 1 (1998),
46–55. https://doi.org/10.1109/99.660313

[11] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, Pete Warden, and
Rocky Rhodes. 2021. TensorFlow Lite Micro: Embedded Machine Learning for
TinyML Systems. In Proceedings of Machine Learning and Systems, Vol. 3. 800–811.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[13] Simone Disabato, Manuel Roveri, and Cesare Alippi. 2021. Distributed Deep
Convolutional Neural Networks for the Internet-of-Things. IEEE Trans. Comput.
70, 8 (2021), 1239–1252. https://doi.org/10.1109/TC.2021.3062227

[14] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. 2017. More is Less:
A More Complicated Network with Less Inference Complexity. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1895–1903. https:
//doi.org/10.1109/CVPR.2017.205

[15] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 199–213.
https://doi.org/10.1145/3297858.3304011

[16] Amirhossein Habibian, Davide Abati, Taco S. Cohen, and Babak Ehteshami Be-
jnordi. 2021. Skip-Convolutions for Efficient Video Processing. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2694–2703.
https://doi.org/10.1109/CVPR46437.2021.00272

[17] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A K-means
Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28 (1979), 100–108.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[19] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P.
Sadayappan. 2019. Adaptive Sparse Tiling for Sparse Matrix Multiplication. In

Proceedings of the 24th Symposium on Principles and Practice of Parallel Program-
ming.

[20] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[21] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360
http://arxiv.org/abs/1602.07360

[22] Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flex-
ible high-resolution object detection on edge devices with tunable latency. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 559–572.

[23] Xiaotang Jiang, HuanWang, Yiliu Chen, Ziqi Wu, LichuanWang, Bin Zou, Yafeng
Yang, Zongyang Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua Wu. 2020.
MNN: A Universal and Efficient Inference Engine. In Proceedings of Machine
Learning and Systems, Vol. 2. 1–13.

[24] Namhyung Kim, Hanmin Park, Dongwoo Lee, Sungbum Kang, Jinho Lee, and
Kiyoung Choi. 2022. ComPreEND: Computation Pruning through Predictive
Early Negative Detection for ReLU in a Deep Neural Network Accelerator. IEEE
Trans. Comput. 71, 7 (2022), 1537–1550. https://doi.org/10.1109/TC.2021.3092205

[25] Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, and Yoshua
Bengio. 2007. An empirical evaluation of deep architectures on problems with
many factors of variation. In Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvalis, Oregon, USA, June 20-24, 2007
(ACM International Conference Proceeding Series, Vol. 227). ACM, 473–480. https:
//doi.org/10.1145/1273496.1273556

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https:
//doi.org/10.1109/5.726791

[27] Seulki Lee and Shahriar Nirjon. 2020. Learning in theWild:When, How, andWhat
to Learn for On-Device Dataset Adaptation. In Proceedings of the 2nd International
Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things (Virtual Event, Japan) (AIChallengeIoT ’20). Association for Computing
Machinery, New York, NY, USA, 34–40. https://doi.org/10.1145/3417313.3429382

[28] Yanhong Li, D. Lopresti, G. Nagy, and A. Tomkins. 1996. Validation of image defect
models for optical character recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 18, 2 (1996), 99–107. https://doi.org/10.1109/34.481536

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In Computer Vision – ECCV 2014. Springer International
Publishing, Cham, 740–755.

[30] Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Pre-
dictiveNet: An energy-efficient convolutional neural network via zero predic-
tion. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 1–4.
https://doi.org/10.1109/ISCAS.2017.8050797

[31] Bingyan Liu, Yuanchun Li, Yunxin Liu, Yao Guo, and Xiangqun Chen. 2020.
Pmc: A privacy-preserving deep learning model customization framework for
edge computing. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 4 (2020), 1–25.

[32] Shuying Liu and Weihong Deng. 2015. Very deep convolutional neural network
based image classification using small training sample size. In 2015 3rd IAPR
Asian Conference on Pattern Recognition (ACPR). 730–734. https://doi.org/10.
1109/ACPR.2015.7486599

[33] Saeeda Naz, Khizar Hayat, Muhammad Imran Razzak, MuhammadWaqas Anwar,
Sajjad A. Madani, and Samee U. Khan. 2014. The Optical Character Recognition
of Urdu-like Cursive Scripts. Pattern Recogn. 47, 3 (mar 2014), 1229–1248. https:
//doi.org/10.1016/j.patcog.2013.09.037

[34] Nihui. 2018. NCNN is a high-performance neural network inference framework
optimized for the mobile platform. http://github.com/tencent/ncnn.

[35] Lin Ning and Xipeng Shen. 2019. Deep Reuse: Streamline CNN Inference on
the Fly via Coarse-Grained Computation Reuse. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3330345.3330384

[36] NVIDIA. 2022. cuBLAS Library. https://developer.nvidia.com/cublas
[37] Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang, Bolei Zhou, and Cewu Lu.

2018. Recurrent Residual Module for Fast Inference in Videos. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 1536–1545. https://doi.
org/10.1109/CVPR.2018.00166

[38] Mathias Parger, Chengcheng Tang, Christopher D. Twigg, Cem Keskin, Robert
Wang, and Markus Steinberger. 2022. DeltaCNN: End-to-End CNN Inference of
Sparse Frame Differences in Videos. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 12487–12496. https://doi.org/10.1109/
CVPR52688.2022.01217

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA,

https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/ISCA.2018.00061
https://doi.org/10.1109/IPSN.2018.00049
https://doi.org/10.1016/j.neucom.2019.01.110
https://doi.org/10.1109/CVPRW.2012.6239191
https://doi.org/10.1109/CVPRW.2012.6239191
https://doi.org/10.1109/TC.2021.3066883
https://doi.org/10.1109/CVPR.2019.01147
https://doi.org/10.1109/TCSVT.2019.2903421
https://doi.org/10.1145/3240508.3240654
https://doi.org/10.1145/3240508.3240654
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TC.2021.3062227
https://doi.org/10.1109/CVPR.2017.205
https://doi.org/10.1109/CVPR.2017.205
https://doi.org/10.1145/3297858.3304011
https://doi.org/10.1109/CVPR46437.2021.00272
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://doi.org/10.1109/TC.2021.3092205
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3417313.3429382
https://doi.org/10.1109/34.481536
https://doi.org/10.1109/ISCAS.2017.8050797
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1016/j.patcog.2013.09.037
https://doi.org/10.1016/j.patcog.2013.09.037
http://github.com/tencent/ncnn
https://doi.org/10.1145/3330345.3330384
https://developer.nvidia.com/cublas
https://doi.org/10.1109/CVPR.2018.00166
https://doi.org/10.1109/CVPR.2018.00166
https://doi.org/10.1109/CVPR52688.2022.01217
https://doi.org/10.1109/CVPR52688.2022.01217

ConvReLU++: Reference-based Lossless Acceleration of Conv-ReLU Operations on Mobile CPU MobiSys ’23, June 18–22, 2023, Helsinki, Finland

USA, 91–99.
[40] Francisco Romero, Qian Li 0027, Neeraja J. Yadwadkar, and Christos Kozyrakis.

2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021. USENIX Association,
397–411. https://www.usenix.org/conference/atc21/presentation/romero

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing,
Cham, 234–241.

[42] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. 2016.
C-Brain: A Deep Learning Accelerator That Tames the Diversity of CNNs through
Adaptive Data-Level Parallelization. In Proceedings of the 53rd Annual Design
Automation Conference (Austin, Texas) (DAC’16). Association for Computing
Machinery, New York, NY, USA, Article 123, 6 pages. https://doi.org/10.1145/
2897937.2897995

[43] Mingcong Song, Jiechen Zhao, Yang Hu, Jiaqi Zhang, and Tao Li. 2018. Prediction
Based Execution on Deep Neural Networks. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). 752–763. https://doi.
org/10.1109/ISCA.2018.00068

[44] Ke Tan and DeLiangWang. 2021. Towards Model Compression for Deep Learning
Based Speech Enhancement. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 29 (2021), 1785–1794. https://doi.org/10.1109/TASLP.2021.
3082282

[45] TIANCHI-Alibaba. 2018. Industrial Defect Dataset. https://tianchi.aliyun.com/
competition/entrance/231682/introduction?lang=en-us

[46] Toshiaki Wakatsuki, Sekitoshi Kanai, and Yasuhiro Fujiwara. 2021. Accelerate
Inference of CNNs for Video Analysis While Preserving Exactness Exploiting
Activation Sparsity. In Proceedings of Machine Learning and Systems, Vol. 3. 860–
872.

[47] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. 2017. DLAU: A
Scalable Deep Learning Accelerator Unit on FPGA. Trans. Comp.-Aided Des. Integ.
Cir. Sys. 36, 3 (mar 2017), 513–517. https://doi.org/10.1109/TCAD.2016.2587683

[48] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip H.S. Torr. 2019.
Fast Online Object Tracking and Segmentation: A Unifying Approach. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 1328–
1338. https://doi.org/10.1109/CVPR.2019.00142

[49] Guojun Wen, Zhijun Gao, Qi Cai, Yudan Wang, and Shuang Mei. 2020. A Novel
Method Based on Deep Convolutional Neural Networks forWafer Semiconductor
Surface Defect Inspection. IEEE Transactions on Instrumentation and Measurement

69, 12 (2020), 9668–9680. https://doi.org/10.1109/TIM.2020.3007292
[50] HaoWen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang, Ya-

Qin Zhang, and Yunxin Liu. 2023. AdaptiveNet: Post-deployment Neural Architec-
ture Adaptation for Diverse Edge Environments. arXiv preprint arXiv:2303.07129
(2023).

[51] Xinxin Wu, Zhihua Fan, Tianyu Liu, Wenming Li, Xiaochun Ye, and Dongrui
Fant. 2022. LRP: Predictive output activation based on SVD approach for CNN s
acceleration. In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 831–836. https://doi.org/10.23919/DATE54114.2022.9774744

[52] Luofeng Xie, Xiao Xiang, Huining Xu, Ling Wang, Lijun Lin, and Guofu Yin.
2021. FFCNN: A Deep Neural Network for Surface Defect Detection of Magnetic
Tile. IEEE Transactions on Industrial Electronics 68, 4 (2021), 3506–3516. https:
//doi.org/10.1109/TIE.2020.2982115

[53] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
2018. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of the
24th Annual International Conference on Mobile Computing and Networking (New
Delhi, India) (MobiCom ’18). Association for Computing Machinery, New York,
NY, USA, 129–144. https://doi.org/10.1145/3241539.3241563

[54] Jinrui Zhang, Huan Yang, Ju Ren, Deyu Zhang, Bangwen He, Ting Cao, Yuanchun
Li, Yaoxue Zhang, and Yunxin Liu. 2022. MobiDepth: real-time depth estimation
using on-device dual cameras. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. 528–541.

[55] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. 2018.
DeepCPU: Serving RNN-based Deep Learning Models 10x Faster. In 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018. USENIX Association, 951–965. https://www.usenix.org/conference/atc18/
presentation/zhang-minjia

[56] Jingyang Zhu, Jingbo Jiang, Xizi Chen, and Chi-Ying Tsui. 2018. SparseNN: An
energy-efficient neural network accelerator exploiting input and output sparsity.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).
241–244. https://doi.org/10.23919/DATE.2018.8342010

[57] Jingyang Zhu, Zhiliang Qian, and Chi-Ying Tsui. 2016. LRADNN: High-
throughput and energy-efficient Deep Neural Network accelerator using Low
Rank Approximation. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). 581–586. https://doi.org/10.1109/ASPDAC.2016.7428074

[58] Zhe Zhu, Dun Liang, Songhai Zhang, Xiaolei Huang, Baoli Li, and Shimin
Hu. 2016. Traffic-Sign Detection and Classification in the Wild. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2110–2118.
https://doi.org/10.1109/CVPR.2016.232

https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/ISCA.2018.00068
https://doi.org/10.1109/TASLP.2021.3082282
https://doi.org/10.1109/TASLP.2021.3082282
https://tianchi.aliyun.com/competition/entrance/231682/introduction?lang=en-us
https://tianchi.aliyun.com/competition/entrance/231682/introduction?lang=en-us
https://doi.org/10.1109/TCAD.2016.2587683
https://doi.org/10.1109/CVPR.2019.00142
https://doi.org/10.1109/TIM.2020.3007292
https://doi.org/10.23919/DATE54114.2022.9774744
https://doi.org/10.1109/TIE.2020.2982115
https://doi.org/10.1109/TIE.2020.2982115
https://doi.org/10.1145/3241539.3241563
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
https://www.usenix.org/conference/atc18/presentation/zhang-minjia
https://doi.org/10.23919/DATE.2018.8342010
https://doi.org/10.1109/ASPDAC.2016.7428074
https://doi.org/10.1109/CVPR.2016.232

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Preliminaries on Conv-ReLU Structures
	2.2 Data Patterns of Conv-ReLU
	2.3 Opportunity and Challenges

	3 Our Approach: ConvReLU++
	3.1 Overall Procedure
	3.2 Hash-based Reference Selection
	3.3 Reference-based Bound Calculation
	3.4 Theoretical Performance Analysis

	4 Mobile Platform Integration
	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Inference FLOPs Reduction
	6.3 Breakdown Analysis
	6.4 Latency Reduction
	6.5 System Memory Overhead

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

