
GUI-Xplore: Empowering Generalizable GUI Agents with One Exploration

Yuchen Sun1 Shanhui Zhao2 Tao Yu2 Hao Wen2

Samith Va1 Mengwei Xu5 Yuanchun Li24∗ Chongyang Zhang13*

1 School of Information Science and Electronic Engineering, Shanghai Jiao Tong University
2 Institute for AI Industry Research (AIR), Tsinghua University

3 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
4 Beijing Academy of Artificial Intelligence (BAAI)

5 Beijing University of Posts and Telecommunications

Abstract

GUI agents hold significant potential to enhance the expe-
rience and efficiency of human-device interaction. How-
ever, current methods face challenges in generalizing across
applications (apps) and tasks, primarily due to two funda-
mental limitations in existing datasets. First, these datasets
overlook developer-induced structural variations among
apps, limiting the transferability of knowledge across di-
verse software environments. Second, many of them focus
solely on navigation tasks, which restricts their capacity to
represent comprehensive software architectures and com-
plex user interactions. To address these challenges, we in-
troduce GUI-Xplore, a dataset meticulously designed to en-
hance cross-application and cross-task generalization via
an exploration-and-reasoning framework. GUI-Xplore in-
tegrates pre-recorded exploration videos providing contex-
tual insights, alongside five hierarchically structured down-
stream tasks designed to comprehensively evaluate GUI
agent capabilities. To fully exploit GUI-Xplore’s unique
features, we propose Xplore-Agent, a GUI agent framework
that combines Action-aware GUI Modeling with Graph-
Guided Environment Reasoning. Further experiments in-
dicate that Xplore-Agent achieves a 10% improvement over
existing methods in unfamiliar environments, yet there re-
mains significant potential for further enhancement towards
truly generalizable GUI agents. 1

1. Introduction

With the growing integration of personal computers and
smartphones, Graphical User Interfaces (GUIs) have be-
come the predominant medium for human-device interac-

*Corresponding authors.
1Dataset and Code are available at https://github.com/

921112343/GUI-Xplore.

tion [24]. GUI agents, envisioned as virtual personal as-
sistants, not only simplify software operations but also of-
fer personalized feedback, thereby holding the potential to
transform the interaction paradigm. However, achieving
a highly generalizable GUI agent that operates seamlessly
across varied apps and tasks remains challenging, due to the
limitations of existing training frameworks and datasets.

In recent years, datasets for GUI agents have expanded
in scope, aiming to benchmark models’ effectiveness in ex-
ecuting user instructions. Some datasets [4–6, 22] lever-
age extensive real-world interaction data to enhance task
planning and execution. Others simulate interactive en-
vironments [7, 25, 33, 36] with structured action spaces
enhance operation abilities in specific environments. De-
spite these advancements, critical limitations remain in sup-
porting generalizable GUI agents. (1) Limited Cross-App
ability: Many datasets lack sufficient app-specific knowl-
edge, which is essential for agents to function effectively in
unfamiliar apps. As shown in Fig 1(a), Developer-driven
structural variations (like design choices or architectural
differences) across apps lead to distinct interaction logic
that hinder effective knowledge transfer, thereby limiting
agent adaptability on unfamiliar environments. (2) Limited
Cross-task ability: Most of current datasets focus primar-
ily on basic automation tasks, neglecting the broader spec-
trum of user intentions and complex interactions that are
essential for generating comprehensive GUI agent.

Inspired by users’ exploration-and-reasoning strategies
when using unfamiliar software, we propose GUI-Xplore
dataset to enhance model generalization across apps and
tasks through the following key innovations:

1. Cross-App Generalization via Exploration Videos:
To address the generalization limitations of existing
datasets, GUI-Xplore incorporates pre-recorded exploration
videos for each app. These videos capture critical infor-
mation, including GUI element components, navigation se-
quences, and user interaction logic, which serve as induc-

ar
X

iv
:2

50
3.

17
70

9v
1

 [
cs

.C
V

]
 2

2
M

ar
 2

02
5

https://github.com/921112343/GUI-Xplore
https://github.com/921112343/GUI-Xplore

Familiar App Unfamiliar App

Training Stage Infering Stage Familiar App Unfamiliar App

Training Stage Infering Stage

Exploration
Video

Exploration
Video

 generate

 Guidance

（a）Current GUI agent paradigm （b）Our Exploration-based paradigm

Single Task

Multiple Task

 generate Generalized
GUI Knowledge

 Generalized
GUI Knowledge

Exploration-guided
Learning Ability

 I will cancel auto-payment in Wallet--Payment--Auto Renewal

 Please cancel auto-payment service in WeChat.

Exploration Video

 According to the exploration, you have one service to cancel

 Please cancel auto-payment service in WeChat.

 Click the setting ICON

Based on experience
with PayPal, service management

might be in the settings

✖

Guidance

Figure 1. Comparison between the current GUI agent paradigm and our exploration-based paradigm. (a) The current paradigm only learns
generalized GUI knowledge during the training stage, lacking app-specific knowledge for inference in unfamiliar apps. For example,
experience with PayPal can not translate to guidance for operating WeChat. (b) Our exploration-based paradigm provides exploration
videos for each app, offering rich information of the entire app, that enable the model to learn both generalized GUI knowledge and
exploration-guided learning ability. In this example, by equipping the GUI agent with knowledge from the exploration video, it can not
only identify proper operation sequence for a given task, but also provide additional information according to the exploration.

tive priors for GUI agents. As illustrated in Fig1(b), the
agent, enhanced with exploration-guided learning ability,
effectively utilizes this prior knowledge to facilitate efficient
knowledge transfer, enabling quicker adaptation to novel
software environments.

2. Cross-Task Versatility Beyond Basic Navigation:
Moving beyond a narrow focus on automation, GUI-Xplore
provides diverse task annotations covering Page Analysis,
Application Usage, Application Overview, Action Recall,
and Action Sequence Verification. This comprehensive task
diversity reflects real-world GUI usages, setting a bench-
mark for evaluating multifunctional GUI agents.

To fully exploit GUI-Xplore’s unique features, we fur-
ther propose a simple baseline framework: Xplore-Agent,
which leverages exploration videos to support stable agent
performance in unfamiliar apps. Given the unstructured
nature of exploration videos, we employ Action-aware
keyframe extraction to identify keyframes based on GUI
actions. Furthermore, we construct a GUI transition graph
to model the complex relationships between GUI screens,
which provides prompts for the LLM to perform five down-
stream tasks. Despite its simplicity, our Xplore-Agent re-
main effective. Experimental results indicate that Xplore-
Agent achieves a 10% improvement over state-of-the-art
(SOTA) methods in previously unseen apps, highlighting
the utility of exploration-based priors for cross-App gen-
eralization. Additionally, benchmarking SOTA methods
across GUI-Xplore’s five hierarchical downstream tasks

revealed significant performance discrepancies, indicating
that current methods still fall short of achieving a fully gen-
eralizable GUI agent. This analysis underscores the value
of GUI-Xplore in advancing the development of versatile
and generalizable GUI agents.

Our contributions are threefold as follows:
1. A Challenging Task for GUI Agent: We propose

the app exploration task, which focuses on the ability of the
GUI agent in cross-app and cross-task scenarios.

2. The GUI-Xplore Dataset: We present a large-scale
dataset supporting the App Exploration task, comprising ex-
ploration videos from 312 apps, with over 32569 Q&A pairs
of multi-level downstream tasks. This dataset establishes
a robust foundation for developing GUI agents capable of
managing diverse and complex user interactions.

3. A Baseline Framework: We propose a two-stage
baseline tailored for GUI-Xplore, enabling a comprehensive
understanding of app environments. Xplore-Agent achieves
a 10% improvement over existing methods in unfamiliar
apps, underscoring the efficacy of exploration-based priors
for cross-app generalization.

2. Related Works
2.1. GUI Benchmarks
Existing benchmarks for generalized GUI agents can be
classified into two categories based on their training
paradigm: pre-trained frameworks and interactive environ-

ment frameworks. The former provides extensive interac-
tion data from real app environments [4–6, 22], enabling
models to capture generalized GUI knowledge such as ac-
tion grounding and task decomposition. However, these
benchmarks often overlook structural differences between
apps, driven by developer preferences or software archi-
tecture, which limits their ability to transfer across unfa-
miliar environments [6]. In contrast, interactive environ-
ment frameworks [7, 25, 33, 36] offer real-time learning
in realistic environments through state feedback or callable
functions. These frameworks provide a “playground” for
agents to learn software interaction but face challenges such
as high design costs [25] and limited transferability across
different apps [36]. Building on insights of these exist-
ing benchmarks, we introduce the GUI-Xplore dataset. By
capturing exploration videos from apps, GUI-Xplore en-
sures comprehensive coverage of interaction modes while
enhancing scalability through screen recording inputs.

2.2. Multi-modal GUI Agent
Recent advancements in large visual-language models
(LVLMs), such as BLIP2 [15], Qwen2-VL [27], and Video-
LLaMa [32], have led breakthroughs in multi-modal un-
derstanding and reasoning. LVLMs have shown significant
promise in a wide range of tasks, including document com-
prehension [20, 21, 26] and GUI understanding [18, 31].
Recent works have further explored LVLMs’ capabilities in
GUI automation tasks [12, 35]. Some approaches focus on
enhancing GUI operation capabilities using reinforcement
learning [2, 23], while others emphasize multi-level GUI
interpretation through page and HTML fusion [9, 10, 13].
Our work distinguishes itself by focusing on the cross-app
and cross-task abilities of GUI agents. Using GUI modeling
and the GUI Transition Graph, our baseline model equips
the agent to rapidly adapt to new environments.

3. The GUI-Xplore Dataset
Existing datasets [6, 22] pay insufficient attention to the di-
versity in app designs and the varied capabilities required by
generalized GUI agents, thereby limiting the performance
of existing methods in cross-app and cross-task scenarios.
To address these shortcomings, GUI-Xplore introduces two
core strategies. First, to facilitate cross-app generalization,
we emulate the human strategy of exploration followed by
reasoning when encountering unfamiliar apps. Specifically,
GUI-Xplore provides models with prior contextual knowl-
edge of each app environment through pre-recorded explo-
ration videos, ensuring a comprehensive coverage of all
screens to capture complete structural information. Sec-
ond, to overcome cross-task limitations, GUI-Xplore de-
fines five hierarchical downstream tasks, focusing on Envi-
ronment Understanding and Operational Behavior Under-
standing, allowing systematic evaluation of model perfor-

mance across diverse operational contexts.

3.1. Task Formulation
The App Exploration task provides the model with ex-
ploration videos of unfamiliar apps, requiring the model
to quickly learn app-specific knowledge and operational
behaviors for effective responses across five downstream
tasks. To ensure consistency across tasks with diverse out-
put formats, we standardize all tasks as five-way multiple-
choice questions. This standardization facilitates evaluation
by aggregating the question-answering accuracy as a unified
performance metric.

3.2. Data Collection
During the data collection phase, we conduct an in-depth
exploration of each app to cover as many interactive pages
as possible. This process systematically recorded page in-
formation, interaction behaviors, and screen activities. The
primary goal of the exploration is to achieve broad cov-
erage, rather than to collect information tailored for spe-
cific downstream tasks, resulting in task-agnostic videos.
Initially, we utilized an automated exploration tool based
on DroidBot [17], which interprets mobile interfaces and
simulates user interactions with clickable elements. This
approach enabled automated exploration and annotation
across 207 apps. However, recognizing the limitations of
automated tools in replicating authentic user behavior, we
developed a manual annotation tool built upon Scrcpy2, an
open-source screen mirroring framework. This tool allowed
crowd workers to explore apps on cloud-based mobile de-
vices, yielding manual data for 105 popular apps.

Notably, DroidBot[17] leverages the collected View Hi-
erarchy3(VH) and action data to generate a GUI Transition
Graph through a rule-based approach, integrating the dis-
crete information captured during the exploration. This not
only provides app-level data for further annotation, but also
inspired the development of the Xplore-Agent method.

3.3. Downstream Task and Annotation
To develop a versatile GUI agent capable of handling di-
verse tasks, we designed five downstream tasks focusing
on two core aspects: interaction environment understand-
ing and operational behavior analysis. The first category
evaluates the model’s understanding of global app functions
and specific GUI components, while the second focuses on
its ability to grasp temporal and logical relationships within
operational sequences. To conduct the annotation, we uti-
lize data collected during the exploration phase, including
detailed page information and the GUI transition graph. To
provide functional annotations, we utilize AutoDroid’s [30]
Simulated Task Generation method via GPT [1], produce

2https://github.com/NetrisTV/ws-scrcpy.
3Similar to the HTML in website.

https://github.com/NetrisTV/ws-scrcpy

Method Data Format Task Task Sample Avg. Env. Env.

Text Image Video Num. Num. Len. Num. Model

Mind2Web[6] ✓ ✓ Task Automation 1 2350 7.3 frame 137
AITW[22] ✓ Task Automation 1 715142 6.5 frame 357

WebArena[36] ✓ ✓ Task Automation 1 812 - 6 ✓
LLaMATouch[33] ✓ ✓ Task Automation 1 495 7.01 frame 57 ✓

VideoGUI[19] ✓ ✓ Task Automation 1 549 55 sec. 11

GUI-Xplore ✓ ✓ ✓ App Exploration 5 32569 21.73 min. 312 ✓

Table 1. Comparison of dataset statistics across GUI agent benchmarks. GUI-Xplore provides exploration videos, ensuring data scalability
(sufficient Env. Num.) while offering rich prior information crucial for environment modeling(Env. Model). Building on this foundation,
GUI-Xplore supports a diverse set of downstream tasks (task num.), delivering a comprehensive dataset to enable the development of
versatile and generalizable GUI agents.

Classify the app and select the functions that best describe its capabilities.

Provide an decription of the screen's functionality at “Page2”(timestamp).

Provide the sequence of screens to get to the page for “Create an alarm” .

Provide timestamp of "Open Clock app" action happened

Provide the order of actions for [Open Clock app, Check timezone, Create an alarm]?

Application Overview

Page Analysis

Application Usage

Action Recall

Action Sequence Verification

Application Overview

Page Analysis Application Usage

Action Recall

Action Sequence Verification

Page1 Page2 Page3 Page4 Page5 Page6 Page7

Action1 Action2 Action3 Action6Action4 Action5

Figure 2. Sample data from five downstream tasks. GUI-Xplore provides app exploration videos paired with five downstream tasks. The
videos comprehensively capture all page and action information during the exploration phase. The downstream task employs multiple-
choice question answering, targeting different granularity of page and action information. Detailed samples are shown in appendix.

functional descriptions and simulated operational tasks for
screens. Leveraging these annotations, we create diverse
QA pairs with GPT, covering various formats for a compre-
hensive model evaluation. The example is shown in Fig2.
Moreover, we conducted a manual review of the generated
QA pairs to validate their accuracy.

3.3.1. Environment Understanding
The Environment Understanding task evaluates the model’s
capacity to capture both global and local information within
an app’s interface.

1. Application Overview: The model is tasked with sum-
marizing the core functions of the app based on video
data. Annotations are generated using metadata from
FDroid4 and subsequently synthesized into detailed soft-
ware function annotations via GPT.

2. Page Analysis: The model is queried to analyze the
page function of specific screen. This subtask assesses
the model’s ability to extract localized information and
functionally interpret GUI interfaces.

3. Application Usage: The model need to infer the op-

4https://f-droid.org/.

eration sequence from homepage to task completion.
Specifically, the target sequence is not shown in ex-
ploration video, which requires the model to integrate
global modeling with local interface understanding.

3.3.2. Operational Behavior Understanding

The Operational Behavior Understanding task assesses the
model’s capacity to comprehend and analyze operational
behavior during interactions.

1. Action Recall: This subtask evaluates the model’s abil-
ity to identify the temporal sequence of operational be-
haviors, necessitating precise localization of specific op-
erations within the video.

2. Action Sequence Verification: This subtask examines
the model’s capability to establish operation order by as-
sessing the sequence of specified actions based on their
global interrelationships. To eliminate operational am-
biguity, unique reachability sets for all nodes are gener-
ated from the GUI transition graph during data collec-
tion. From these sets, operation triples with clear topo-
logical relationships are extracted to create comprehen-
sive annotations for this task.

https://f-droid.org/

3.4. Dataset Analysis
The GUI-Xplore dataset consists of annotations for 312
apps, of which 207 were obtained via automated exploration
and 105 through manual annotation. It encompasses 33 sub-
categories within 6 primary software domains: Entertain-
ment, Productivity, Health, Shopping, Travel, and News.
Collectively, the dataset includes 115 hours of exploratory
videos, averaging 23.73 minutes per app, establishing com-
prehensive environmental priors to enhance cross-app gen-
eralization in GUI agents. Each app contains annotations
for five downstream tasks, totaling 32,569 question-answer
pairs to facilitate robust cross-task training and evaluation.
To support varied GUI agent approaches, the dataset syn-
chronizes 34,367 visual hierarchy captures, screenshots,
and 41,293 action annotations.

Data partitioning was conducted to leverage the deeper
traversal and smoother operational flow of manually-
collected data. Specifically, 20% of apps from the manual
dataset were allocated to the test set to ensure representa-
tion across all six software categories. The remaining 80%
of the manually-collected data, alongside all automated ex-
ploration data, formed the training set.

3.5. Comparison with Existing Dataset and Re-
search Challenges

The GUI-Xplore dataset represents a framework shift,
distinguishing the current pre-training paradigm to
exploration-then-reasoning. This framework enhances
cross-app adaptability by providing models with app-
specific interaction insights via pre-recorded exploratory
videos, enabling dynamic adaptation to diverse software
environments. Moreover, GUI-Xplore includes five hierar-
chical downstream tasks that require models to construct
a comprehensive, layered understanding of app struc-
tures and inter-page relationships, essential for advanced
human-device interaction.

This comprehensive design presents novel research chal-
lenges for advancing GUI agent development. First, the
explore-then-reason framework not only focus on the foun-
dational understanding of GUI components, but also the
ability to induce knowledge for unfamiliar app. Second,
the multi-layered downstream tasks require the model to es-
tablish global mappings across app structures, progressing
beyond single-action generation to attain deeper structural
comprehension. Finally, GUI-Xplore’s extensive 20-minute
interaction videos, covering approximately 200 pages per
app, introduce additional processing complexity yet signif-
icantly enrich the model’s contextual understanding.

4. Baseline Method: Xplore-Agent

The App Exploration task in the GUI-Xplore dataset
presents challenges due to its information density and the

multi-layered nature of the downstream tasks. To address
these challenges, we introduce a two-stage framework for
GUI agents, as shown in Fig 3. The first stage employs
Action-aware GUI Modeling, wherein local GUI features
are extracted from representative keyframes and interaction
sequences, enabling the model to capture interactions that
are both context-specific and semantically rich. The sec-
ond stage employs a GUI Transition Graph to model the
app’s global environment, integrating the local interactions
into a comprehensive representation of the app’s structure.
Subsequently, this graph-based representation is processed
by a LLM to perform downstream Q&A tasks, allowing the
agent to reason effectively across both local interactions and
the app’s broader structural context.

4.1. Action-aware GUI Modeling

Exploration videos offer rich visual and temporal informa-
tion, but their unstructured format hinders efficient encod-
ing and interpretation. To address this, we model opera-
tional behavior by extracting keyframes and generating op-
erational sequences, preserving fine-grained details, such as
interaction transitions and state changes.

4.1.1. Action-aware Frame Extraction

To capture operational dynamics from the exploration
video, we first focus on Action-aware Frame Extraction.
Unlike natural video flows, GUI actions often manifest with
distinct boundaries, preceded and followed by relatively
static states. To accurately detect the beginning and end
of actions, we utilize luminance difference (Y-Diff) in the
YUV color space [8], which is sensitive to visual changes
and computationally more efficient than alternative met-
rics, such as structural similarity [28]. By tracking Y-Diff
changes across adjacent frames, key frames marking the
start and end of each action are accurately identified.

4.1.2. Exploration Sequence Generation

The exploration video encompasses nearly all interactive
pages, resulting in an average of 200 keyframes after
action-aware extraction. To preserve operational coherence
without further reducing the keyframe count, we convert
keyframe information into textual representations. This is
achieved through VH generation and action generation, en-
abling data compression while retaining details.

VH Generation. We adopt the pre-training objective
of Pix2Struct [14] and utilize a Language-Vision Model
(LVLM) to generate simplified VH data for each page.

Action Generation. To assist downstream modules
in understanding page transformations, we develop a pre-
trained action generation module that outputs action cate-
gories and associated objects by processing screenshots and
simplified VH representations of adjacent frames.

LLM Reasoning

View Hierarchy Generation

Action Generation

GUI Clustering
display_screen

sound_selection_screen

zone_selection_screen

warning_screen

configuration_screen

 Cluster list

Multi-Task Query
Overview: provide an overview of the screen's functionality at

<Timestamp>?

VH1 VH2 VH3 VH4 VH5 VH6
Action1 Action2 Action3 Action4 Action5

Exploration Sequence

Action-aware
Keyframe Extraction

[Answer:A,B,C,D]Unfamiliar
APP

...
Usage: Provide the sequence of screens I should follow to get

to the page for <Simulate Task>

...

Node List Edge List

1

2

4

3

5

warning_screen

zone_selection_screen

sound_selection_screen

Possible ActionExplore ActionScreen Node

GUI Transition Graph

display_screen

configuration_screen

<Start>

<End>

<Node Name, VH>
pairs

<From Node, To Node>
pairs

Exploration Video

View Hierarchy Sequence

 Action Sequence

Figure 3. An overview of the Xplore-Agent pipeline. The model takes an exploration video and a task query as inputs, generating predicted
answers. Specifically, the exploration video is converted into a textual exploration sequence through Action-aware Keyframe Extraction,
View Hierarchy Generation, and Action Generation. The GUI Clustering Model then groups screens with similar functionalities, trans-
forming the linear sequence into a GUI Transition Graph. Finally, the nodes and edges are used to compose the prompt for querying LLM.

4.2. Graph-Guided Environment Reasoning
Unlike the discrete, linear operation flow typical of standard
GUI tasks, real-world apps feature intricate and non-linear
page transition patterns. To model this complexity, we in-
troduce the GUI Transition Graph to represent the graph
structure of the environment in exploration videos, captur-
ing the app’s complex page-switching dynamics. Specifi-
cally, we cluster similar pages in the video to generate the
graph that represent interaction relationships, which guide
downstream question-answer reasoning tasks.

4.2.1. GUI Clustering
The goal of page clustering is to group pages with shared
GUI transition relationships, converting the linear opera-
tion flow into a graph. Unlike the data collection phase,
where both the real page View Hierarchy (VH) and oper-
ational behavior data are available, inference relies solely
on the input exploration video and generated intermediate
results. To address this limitation, we propose a GUI clus-
tering module based on LVLM. This module leverages the
LVLM’s ability to understand and summarize local screen-
shots and operational behaviors while maintaining a list of
screen nodes. The model sequentially processes operational
keyframes, determining whether the new keyframe belongs
to an existing node’s functional category. If they match, the

keyframe is grouped with the corresponding node; if not, a
new screen node is created, along with a functional descrip-
tion of the page to aid subsequent clustering.
4.2.2. Graph Generation and Q&A
By combining GUI clustering with action information mod-
eling, we generate a GUI Transition Graph. In the graph,
nodes represent screen cluster centers, with functional de-
scriptions as node values, while edges connect nodes based
on the generated action information. This graph provides a
global representation of the interaction environment. Thus
we utilize the node list and edge list of the graph to serve
as context for downstream Q&A tasks, guiding the LLM in
completing task-specific queries.

5. Experiments
The GUI-Xplore dataset aims to push the boundaries of
cross-app and cross-task capabilities for GUI agents. First,
in Section 5.3.1, we demonstrate the improved cross-app
generalization performance of Xplore-Agent compared to
existing GUI agents. Next, Section 5.3.2 provides com-
prehensive benchmarking of SOTA models across a range
of diverse tasks included in GUI-Xplore, highlighting each
model’s strengths and limitations. Finally, in Section 5.4,
we conduct ablation studies to quantify the impact of each
critical component in the Xplore-Agent framework.

5.1. Experimental setup
In the Cross-App Generalization experiment, to mitigate the
impact of task discrepancies when comparing against exist-
ing GUI agent methods, we constructed a Cross-App Au-
tomation test set based on the Application Usage task from
GUI-Xplore dataset. This test set includes 500 operations
spanning 20 diverse software apps and is structured consis-
tently with standard automation benchmarks. All samples
were manually curated to exclude any overlaps with exist-
ing datasets or action sequences that appeared in the ex-
ploration videos, ensuring unbiased evaluation. We com-
pared SOTA GUI agents against our baseline model Xplore-
Agent to measure the generalization improvements facili-
tated by the proposed exploration-based framework.

In the Cross-Task Performance experiment, we evalu-
ated SOTA methods specifically designed for processing
long-duration video inputs. This experiment aimed to com-
prehensively assess the capabilities of current approaches
across multiple complex tasks.

Baseline Setup. Xplore-Agent follows a two-stage
pipeline consisting of Action-aware GUI Modeling and
Graph-guided Reasoning. In the Action-aware GUI Mod-
eling phase, we fine-tuned QwenVL-7B [3] to enhance its
understanding of visual and textual features. For the Graph-
guided Reasoning phase, GPT was employed to conduct
page clustering and contextual reasoning based on the hi-
erarchical structure of the GUI.

5.2. Competing Methods
Video Understanding Methods. We categorized the eval-
uated models into three distinct groups: (1) two-stage mod-
els (e.g., VideoTree [29]), (2) open-source end-to-end mod-
els (e.g., CogVLM2-Video [11], VideoChat2 [16], VideoL-
LaMA [32]), and (3) closed-source end-to-end models (e.g.,
GPT [1]). Two-stage models first generate textual features
from video frames before leveraging language models for
reasoning and question answering, offering improved ac-
curacy in handling long-duration videos at the cost of in-
creased computational complexity. Notably, for models like
VideoTree that require textual input, we utilized Pix2Struct
to generate captions from GUI content, enhancing their un-
derstanding of GUI Screenshots.

GUI Agent Methods. To provide a robust benchmark,
we selected three SOTA GUI agent methods for compara-
tive evaluation, including CogAgent[12], SeeClick[5] and
AUTO-UI[34]. These methods obtain GUI operation capa-
bilities through extensive training on comprehensive GUI
automation datasets.

5.3. Main Result
5.3.1. Cross-App Experiment
In Table 2, we present the performance of existing SOTA
GUI agents alongside our proposed baseline, Xplore-Agent,

Method Ele. Acc. Op. Acc. StepSR

GPT[1] 5.06% 66.12% 4.02%
AUTO-UI[34] 7.40% 24.87% 2.17%
SeeClick[5] 6.64% – 6.64%

CogAgent[12] 17.18% 73.54% 15.80%

Xplore-Agent 30.73% 84.63% 30.39%

Table 2. Comparison of SOTA GUI agent methods on the Cross-
App Task Automation test-set.

evaluated on the Cross-App test set. Following the eval-
uation metrics of the Mind2web benchmark, we include
Element Accuracy (Ele. Acc.), Operation Accuracy (Op.
Acc.), and Step Success Rate (StepSR).

Without automation-specific pre-training, Xplore-Agent
effectively integrates general knowledge from LVLMs with
app-specific knowledge acquired during the exploration
phase. This combination facilitates robust knowledge trans-
fer in unfamiliar software environments, demonstrating a
notable 10% increase in all three metrics compared to exist-
ing SOTA methods.

5.3.2. Cross-Task Experiment
In Table 3, we present the performance of SOTA long video
comprehension methods alongside our proposed Xplore-
Agent across five downstream GUI tasks in GUI-Xplore.

Comparison of Methods: The experimental results
demonstrate that two-stage video comprehension methods
tend to outperform end-to-end approaches across various
tasks. This superior performance can be attributed to their
denser frame sampling and the efficient compression of ex-
tensive information using textual descriptions, effectively
leveraging the exploration video data. Xplore-Agent effec-
tively models global app information using a GUI Transi-
tion Graph, resulting in a significant performance improve-
ment compared to the two-stage method VideoTree. Ad-
ditionally, GPT surpasses open-source end-to-end models
in overall GUI agent capabilities, but incurs significantly
higher token processing costs during video input.

Task Performance Analysis: The results reveal a sub-
stantial performance disparity across the five types of GUI
navigation tasks. All models show superior performance
on Environment Understanding tasks compared to Opera-
tional Behavior Understanding tasks. This suggests that ex-
isting LVLMs possess inherent GUI comprehension capa-
bilities acquired from large-scale pre-training, yet there re-
mains considerable room for improvement in understanding
inter-page relationships and GUI interaction behaviors. No-
tably, Xplore-Agent also demonstrates performance gains
on those challenging tasks.

Impact of Input Frame Count: We analyzed how
varying input frame counts affect end-to-end model perfor-
mance. Notably, increasing the frame count often degraded

Method Frames Overview Page Usage Recall Seqverify Avg.

CogVLM2-Video[11] 24 82.00% 56.31% 32.96% 8.03% 6.73% 37.21%
CogVLM2-Video 16 84.88% 56.75% 48.88% 9.67% 3.85% 40.81%
CogVLM2-Video 8 84.87% 56.93% 53.56% 5.84% 8.17% 41.87%
VideoChat2[16] 24 82.30% 64.42% 67.04% 21.90% 23.87% 51.91%

VideoChat2 16 82.00% 66.42% 66.48% 18.98% 18.27% 50.43%
VideoChat2 8 86.50% 68.97% 67.04% 18.98% 17.79% 51.86%

VideoLLaMA2[32] 16 84.00% 69.71% 62.92% 18.43% 17.31% 50.47%
VideoLLaMA2 8 86.75% 75.00% 61.24% 21.90% 20.19% 53.02%

GPT[1] 24 96.50% 81.93% 67.04% 21.72% 23.56% 58.15%
GPT 16 96.75% 80.47% 66.85% 24.09% 25.96% 58.82%
GPT 8 96.88% 82.12% 66.48% 22.6% 28.85% 59.39%

VideoTree[29] 1FPS 89.75% 91.05% 65.73% 21.70% 21.61% 57.97%
Xplore-Agent action-aware 99.25% 92.86% 68.21% 24.36% 36.54% 64.24%

Table 3. Performance comparison of SOTA Video Understanding methods on GUI-Xplore.

Cluster Overview Page Usage Recall SeqVerify Avg. Avg. Token /App

w/o Cluster - - - - - - 5144107
Rule 99.62% 92.98% 67.60% 23.62% 25.54% 61.87% 63771
GPT 99.25% 92.86% 68.21% 24.36% 36.54% 64.24% 45199

Table 4. Comparison of different GUI clusters methods.

performance, indicating that more input frames do not nec-
essarily improve environment understanding. Instead, ex-
cessive input data can overwhelm the model, increasing am-
biguity and reducing performance.

5.4. Ablation Experiment

We conduct ablation experiments to investigate the influ-
ence of each component and design in GUI-Xplore.

5.4.1. GUI clustering

Xplore-Agent encodes GUI modeling-generated linear se-
quences into a GUI Transition Graph through GUI clus-
tering, where clustering accuracy is critical for model per-
formance. We performed ablation studies to compare our
clustering method against a traditional rule-based approach,
which utilizes View Hierarchy (VH) and screenshot simi-
larity for clustering. As shown in Table 4, our clustering
method effectively reduces token usage while simultane-
ously improving prediction accuracy, highlighting its ad-
vantages in GUI representation and task inference.

5.4.2. Action-aware keyframe extraction

Keyframe Method Num./app Page Num./100 frames

1 FPS 629.35 54.95
Action-aware 115.75 10.11

Table 5. Comparison of keyframe extraction methods.

Due to the substantial information contained in explo-
ration videos, it is essential to minimize the number of
keyframes. While fixed-interval sampling is a common
strategy, it overlooks the distinctive interaction patterns in
GUI videos. As illustrated in Table 5, the action-aware ex-
traction approach effectively eliminates redundant frames,
thereby reducing the computational burden for subsequent
analysis.

6. Conclusion

To tackle the generalization gap in current GUI agents
across diverse apps and tasks, we present GUI-Xplore.
GUI-Xplore provides exploration videos as rich priors for
unfamiliar software, boosting performance in varied tasks.
Based on this, we introduce Xplore-Agent, a baseline
framework utilizing a GUI Transition Graph to model the
exploration environment. Experiments show that this ap-
proach significantly improves cross-app generalization and
multi-task capabilities. We anticipate that the exploration-
based framework will advance the development of more
versatile and generalizable GUI agents.

Limitation. To enhance task generality, GUI-Xplore
only requires the model to output textual answers instead
of concrete actions, indicating that our work has not yet
achieved a fully generalized GUI agent. Additionally, the
collection of exploration videos faces challenges related to
data sources and privacy concerns. These limitations are
discussed in detail in the appendix.

Acknowledgements

This work is supported by National Natural Science Foun-
dation of China (Grant No.62272261), Tsinghua University
(AIR)–AsiaInfo Technologies (China) Inc. Joint Research
Center, Wuxi Research Institute of Applied Technologies,
Tsinghua University and Beijing Academy of Artificial In-
telligence (BAAI).

This work was partly funded by the Shanghai
Municipal Science and Technology Major Project
(2021SHZDZX0102), and STCSM (22DZ2229005).

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 3, 7, 8

[2] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr,
Sergey Levine, and Aviral Kumar. Digirl: Training in-the-
wild device-control agents with autonomous reinforcement
learning. arXiv preprint arXiv:2406.11896, 2024. 3

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for un-
derstanding, localization, text reading, and beyond. arXiv
preprint arXiv:2308.12966, 1(2):3, 2023. 7

[4] Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang,
Yue Zhao, Chongyi Wang, Jun Liu, Guirong Chen, Yupeng
Huo, et al. Guicourse: From general vision language mod-
els to versatile gui agents. arXiv preprint arXiv:2406.11317,
2024. 1, 3

[5] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yan-
tao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Har-
nessing gui grounding for advanced visual gui agents. arXiv
preprint arXiv:2401.10935, 2024. 7

[6] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web:
Towards a generalist agent for the web. Advances in Neural
Information Processing Systems, 36, 2024. 1, 3, 4

[7] Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Se-
hoon Kim, Ryan Tabrizi, Suhong Moon, Coleman Hooper,
Gopala Anumanchipalli, Kurt Keutzer, and Amir Gholami.
Tinyagent: Function calling at the edge. arXiv preprint
arXiv:2409.00608, 2024. 1, 3

[8] Sidong Feng, Chunyang Chen, and Zhenchang Xing.
Video2action: Reducing human interactions in action anno-
tation of app tutorial videos. In Proceedings of the 36th An-
nual ACM Symposium on User Interface Software and Tech-
nology, pages 1–15, 2023. 5

[9] Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Mat-
suo, Aleksandra Faust, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned
foundation models. arXiv preprint arXiv:2305.11854, 2023.
3

[10] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari,
Yutaka Matsuo, Douglas Eck, and Aleksandra Faust. A real-
world webagent with planning, long context understanding,
and program synthesis. arXiv preprint arXiv:2307.12856,
2023. 3

[11] Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu,
Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang, Jun-
hui Ji, Zhao Xue, et al. Cogvlm2: Visual language mod-
els for image and video understanding. arXiv preprint
arXiv:2408.16500, 2024. 7, 8

[12] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao
Dong, Ming Ding, et al. Cogagent: A visual language model
for gui agents. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14281–
14290, 2024. 3, 7

[13] Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng,
Yu Su, and Wei-Lun Chao. Dual-view visual contextualiza-
tion for web navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14445–14454, 2024. 3

[14] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu,
Fangyu Liu, Julian Martin Eisenschlos, Urvashi Khandel-
wal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova.
Pix2struct: Screenshot parsing as pretraining for visual lan-
guage understanding. In International Conference on Ma-
chine Learning, pages 18893–18912. PMLR, 2023. 5

[15] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In In-
ternational conference on machine learning, pages 19730–
19742. PMLR, 2023. 3

[16] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang,
Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, et al.
Mvbench: A comprehensive multi-modal video understand-
ing benchmark. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22195–
22206, 2024. 7, 8

[17] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.
Droidbot: a lightweight ui-guided test input generator for an-
droid. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 23–26.
IEEE, 2017. 3

[18] Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh
Agrawal, Xiujun Li, Mohana Prasad Sathya Moorthy, Jeff
Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Master-
ing universal user interface understanding across platforms.
arXiv preprint arXiv:2410.18967, 2024. 3

[19] Kevin Qinghong Lin, Linjie Li, Difei Gao, Qinchen
Wu, Mingyi Yan, Zhengyuan Yang, Lijuan Wang, and
Mike Zheng Shou. Videogui: A benchmark for gui
automation from instructional videos. arXiv preprint
arXiv:2406.10227, 2024. 4

[20] Chaohu Liu, Kun Yin, Haoyu Cao, Xinghua Jiang, Xin Li,
Yinsong Liu, Deqiang Jiang, Xing Sun, and Linli Xu. Hrvda:
High-resolution visual document assistant. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15534–15545, 2024. 3

[21] Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma,
Shuo Zhang, and Xiang Bai. Textmonkey: An ocr-free
large multimodal model for understanding document. arXiv
preprint arXiv:2403.04473, 2024. 3

[22] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana
Riva, and Timothy Lillicrap. Androidinthewild: A large-
scale dataset for android device control. Advances in Neural
Information Processing Systems, 36, 2024. 1, 3, 4

[23] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant,
Panupong Pasupat, Hexiang Hu, Urvashi Khandelwal, Ken-
ton Lee, and Kristina N Toutanova. From pixels to ui ac-
tions: Learning to follow instructions via graphical user in-
terfaces. Advances in Neural Information Processing Sys-
tems, 36:34354–34370, 2023. 3

[24] Backlinko Team. Smartphone usage statistics, 2024. 1
[25] Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin

Manku, Vinty Dong, Edward Li, Shashank Gupta, Ashish
Sabharwal, and Niranjan Balasubramanian. Appworld: A
controllable world of apps and people for benchmarking in-
teractive coding agents. arXiv preprint arXiv:2407.18901,
2024. 1, 3

[26] Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wen-
qing Cheng, Fei Huang, Xiang Bai, Cong Yao, and Zhibo
Yang. Omniparser: A unified framework for text spotting
key information extraction and table recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15641–15653, 2024. 3

[27] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, et al. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191, 2024. 3

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 5

[29] Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong
Yoon, Feng Cheng, Gedas Bertasius, and Mohit Bansal.
Videotree: Adaptive tree-based video representation for llm
reasoning on long videos. arXiv preprint arXiv:2405.19209,
2024. 7, 8

[30] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao
Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, Yaqin Zhang,
and Yunxin Liu. Autodroid: Llm-powered task automation
in android. In Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking, pages
543–557, 2024. 3

[31] Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang, and Zhe
Gan. Ferret-ui: Grounded mobile ui understanding with mul-
timodal llms. In European Conference on Computer Vision,
pages 240–255. Springer, 2025. 3

[32] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An
instruction-tuned audio-visual language model for video un-
derstanding. arXiv preprint arXiv:2306.02858, 2023. 3, 7,
8

[33] Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe
Yan, Longxi Gao, Yuanchun Li, and Mengwei Xu. Llama-

touch: A faithful and scalable testbed for mobile ui automa-
tion task evaluation. arXiv preprint arXiv:2404.16054, 2024.
1, 3, 4

[34] Zhuosheng Zhang and Aston Zhang. You only look at
screens: Multimodal chain-of-action agents. arXiv preprint
arXiv:2309.11436, 2023. 7

[35] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu
Su. Gpt-4v (ision) is a generalist web agent, if grounded.
arXiv preprint arXiv:2401.01614, 2024. 3

[36] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert
Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan
Bisk, Daniel Fried, et al. Webarena: A realistic web en-
vironment for building autonomous agents. arXiv preprint
arXiv:2307.13854, 2023. 1, 3, 4

	Introduction
	Related Works
	GUI Benchmarks
	Multi-modal GUI Agent

	The GUI-Xplore Dataset
	Task Formulation
	Data Collection
	Downstream Task and Annotation
	Environment Understanding
	Operational Behavior Understanding

	Dataset Analysis
	Comparison with Existing Dataset and Research Challenges

	Baseline Method: Xplore-Agent
	Action-aware GUI Modeling
	Action-aware Frame Extraction
	Exploration Sequence Generation

	Graph-Guided Environment Reasoning
	GUI Clustering
	Graph Generation and Q&A

	Experiments
	Experimental setup
	Competing Methods
	Main Result
	Cross-App Experiment
	Cross-Task Experiment

	Ablation Experiment
	GUI clustering
	Action-aware keyframe extraction

	Conclusion

