MMGuard: An Automated Tool for Protecting
On-Device Deep Learning Models in Android Apps

Jiayi Hua!, Yuanchun Li?
! Beijing University of Posts and Telecommunications, China 2

Abstract—On-device deep learning models have shown growing
popularity in mobile apps, which allows offline model inference
while preserving user privacy. However, on-device deep learning
models also introduce security challenges, i.e., the trained models
can be easily stolen by attackers and even be tampered. Previous
work suggested that most of the on-device models are lacking of
protection, i.e., can be stolen by decompiling the apps directly.
In this work, we present MMGuard, an automated framework
for building mutual authentication between mobile apps and
DNN models, which can thus protect on-device models from
being easily attacked. Unlike existing model protect methods, our
approach does not require model training or any prior knowledge
of training data. The key idea of MMGuard is to verify the deep
learning model in the app before inference, i.e., feeding owner-
and app- related information to it, which can greatly increase the
effort of model hacking. We evaluate our tool on 5 popular image
classification DNNs and 58 real world apps. Experiment results
suggest that MMGuard introduces negligible latency on models
and can be automatically applied to real world Android apps.
The full paper of this work is in submission to a top-tier software
engineering venue. The demo video of this tool is available at:
https://v.youku.com/v_show/id_XNDkzODMS5ODEOOA==.html

I. INTRODUCTION

Deep learning models are increasingly used in mobile apps
as critical components to provide artificial intelligence fea-
tures such as facial recognition, natural language processing,
recommendation, and speech recognition, etc.

Performing deep learning tasks on the server side has always
been criticized due to issues including privacy and network
latency. Thus, on-device deep learning models are gaining
popularity in mobile apps, which offer benefits desirable for
both mobile users and app developers. For app developers, they
are relieved from the expense of maintaining cloud service or
server. For app users, they do not need to concern the privacy
issue and the network latency.

However, on-device models inevitably introduce new secu-
rity challenges. The models are stored locally on user devices,
which can be easily stolen and attacked, as illustrated in
Figure 1. First, training a DNN model often requires lots of
resource, including proprietary training data, algorithm, and
computational infrastructure. If the DNN model is unprotected
in the app, attacker who has basic reverse engineering ability
can easily extract it without much effort, and reuse it in his
own mobile apps, infringing the intellectual property of the
model owner. Second, DNNs have been found vulnerable to
various kinds of attacks, like backdoor attack [1, 2], which
injects a backdoor into a model to make it behave normally
in most times while behave exceptionally when certain trigger
appears. Thus, attackers can modify the extracted DNN models

, Haoyu Wang!
Microsoft Research

rY

%:cv E
g
tampermg
%‘é*@aa
Z

Fig. 1: Security issues introduced by on-device models.

(e.g., injecting a backdoor) and repackage the app to infect
unsuspecting users. Unfortunately, recent work suggested that
most of the on-device models are lacking of protection, and
no systematic tools can be easily used to protect the models
effectively. Thus, it motivates us to create an automated tool
to protect the models from being stolen or tampered.

This demonstration presents MMGuard, a tool for protecting
DNN models in Android apps by encoding the unique features
extracted from the app to the DNN model. Note that, we
do not require model re-training or any prior knowledge of
the training data. Our tool works on the black-box models.
To be specific, we first decode the data-flow graph from the
original model file, then modify the nodes containing valuable
weights by manipulating the data-flow graph. We next generate
a new model from the modified data-flow graph to replace the
original one. The new model will take app-related signature
information as additional input during the model inference pro-
cess. By enhancing the code logic of mobile DL framework,
for example, TensorFlow [3], the app is enforced to verify the
DNN model before inference and the signature information
extracted from the app binaries is injected to the model in
advance. A DNN model can provide correct inference results
only when the app has correct signature information input
to it, otherwise the inference accuracy will be significantly
deteriorated. Furthermore, the app has to attest the integrity
of DNN model before inference, and the execution will be
terminated if authentication fails.

MMGuard is implemented as a fully automated tool, i.e.,
with the original app embedded with unprotected model as
input, and the output is the app embedded with protected DNN
model. We believe MMGuard can promote best operational
practices across app developers.

B replace TF lib code with
code model
verification \
model r-—9 r-—y
protection "l l'l
phase original APK modefiy NN logic model / new APK
model Y with' code
unpack verification repack
developer- | | T g
specified token
__ %@ > dog
runtime md5 md5
verification computation comparation
initialization stage %g —> cat

inference stage

Fig. 2: Overview of MMGuard.

II. TooL DESIGN

As shown in Figure 2, MMGuard consists of two proce-
dures, model protection and runtime verification. MMGuard
protects the DNN model in an Android app by injecting
verification logic into both the DL library and the model. To
use MMGuard, the developer is asked to provide an APK
file and a secret token (e.g., the signature of the app as
default). MMGuard first disassembles the code and model
from the APK file. An extra input node is inserted into
the model, and a random convolution layer in the model is
selected as the target to inject verification logic. The static
weights in the convolution layer are replaced with variables
computed with the extra input at runtime. The weights can
be correctly computed if and only if the extra input matches
the secret token. Meanwhile, MMGuard replaces the original
TensorFlow library in the app code with a modified one that
contains additional model verification logic. At runtime, the
modified library checks the model signature during initializa-
tion, and feeds the normal input and the extra secret token
into the model during inference. Thus, the DNN model in
the app is protected against both model backdoor attack (the
backdoored model would fail upon signature verification) and
model stealing (the stolen model would not behave correctly
without the secret token).

A. Notations

Let f represents the original DNN model, and x be an
input of the model. The prediction result of x is y = f(x).
The model after modification is denoted as f’. app is the
Android app that contains f, and s, represents the signature
of app defined by app developer. Function KEYGEN is used
to generate an app-specific key keyq ., which will be injected
to f’. We use y’ as the symbol of f’(x), the prediction result
of f’ forthe given input x.

B. Model Protection Procedure

The model protection procedure consists of five main steps:

(1) The model owner creates a message that only he knows
for his app as the evidence to prove his ownership. Then
he selects one or more convolution layers from his model
f where the weights are valuable.

We create the signature s, by hashing the message, and
extract data-flow graph from the model to get information
of each layer. Then we use pseudorandom random gener-
ating (PRG) with seed s, as an instance of KEYGEN
to generate key,p,. Here the length of key,,, depends
on the size of weights of selected convolution layer. The
Sapp and layer number are indispensible in our protection
approach.

For each selected convolutional layer, we resize key.p,
to a tensor the same dimensions as weights, then we
subtract key,p, from the weights, saving the results as
new weights. For each convolutional layer, we add an
input branch and tensor addition operator in order to
recovery correct weight during running procedure later.
The modification of convolutional layer is depicted in
Figure 3. After modification, we recompile the model and
get f'.

Compute the md5 value of f’. Then combine the sig-
nature, md5 value and selected layer number into a
inputinfo file, which will be stored in security memory,
like TrustZone or server, when app is deployed.
Recompile the model, f’, from the modified data-flow
graph and replace f in apk file.

We change the code logic of initializing and running a
TensorFlow model. And we compile a new TensorFlow
framework with the same user interface to replace the
original one. This ensures that the users will not feel any
changes in usage. Replace f with f’ and the original DL
framework, then repack apk to get the protected app.

2

3)

“4)

®)

weights

KeYapp

default input PlacehodelWithDefault

modified

weights A

Fig. 3: The structure of convolutional layer before and after
modification

C. Runtime Verification Procedure

There are mainly two steps in the runtime verification.

1) Initialization. When user triggers the DNN functionality
at the first time, the app initializes the inference interface.
During initialization, the app extracts inputinfo file and
reads the md5 value, computes a md5S of existing f”. If
these two mdS values are matched, the app continues to
read signature and selected layer number from inputinfo
file, otherwise it will abort initialization.

2) Runtime protection. Every time the app runs f’, it first
gets original input x and feeds to f’. Then for each
selected convolutional layer, the app feeds keyp) to the
input branch where key,, is calculated by PRG using
Sapp as seed. Finally the app fetches y’ from f’ as usual.
The performance of f’ will be significantly deteriorated,
if the signature is wrong.

III. EXAMPLE

As shown in Figure 4, we take an image classification app
to show the effectiveness of MMGuard. We input the app
into MMGuard, and the model protection can be performed
automatically. We next compare the app in different scenarios
including normal, model stealing and model tampering. Figure
4(a) shows the normal results of the app, where the app
classifies an image of table and chairs as “dinning table”
and “rocking chair”. If an attacker intends to steal the model
and deploy it in his own app, he may decompile the apk
and extract the model file directly. But the weights stored
in the model have been modified already. Therefore, even if
the attacker can successfully run the model in his own app,
the model cannot work as expected, as shown in Figure 4(b)
(the image is mis-classified as a purse). If the attacker tries to
tamper the original model to achieve some malicious purpose
(e.g., inserting a backdoor) and repackage the apk with the
original model replaced, the result is shown in Figure 4(c).
Any small alterations in model will lead to big change of
md>5 value, i.e., the runtime verification would be failed. Thus,
the execution will be terminated, leading to no classification
results provided.

(a) normal

(b) model stealing (c) model tampering

Fig. 4: An example to show the effectiveness of MMGuard.

IV. EVALUATION

We mainly evaluate MMGuard from two aspects, the per-
formance overhead and the usability on real world apps. We
investigate the performance of MMGuard on five popular
neural network models including InceptionV3, MobileNet,
NasNetMobile, ResNet50 and DenseNetl121. To evaluate the
scalability on real-world apps, we collected 58 apps that
include on-device models trained with Tensorflow framework.

A. Performance Overhead

The performance overhead is measured by considering
both the initialization overhead and the runtime protection
overhead. We run 50 times for each type of model and the
average time is reported in Table I and Table II.

Initialization Overhead. Overall, the overhead of initializa-
tion time is around 449 ms on average, as shown in Table I,
which we think is tolerable because it is the one-time overhead.
The delay is brought mainly by the increasing in model size
and the computing of md5 value. We notice that the ResNet50
has the largest latency difference mainly because it has the
biggest model size. We use placeholder_with_default in input
branch, which needs to store a tensor as default input value.
Moreover, we modify all convolutional layers in order to hide
selected layers among them to increase cost of attack. In real-
world usage scenario, app developers can choose placeholder
operation or fewer layers to reduce initialization overhead.

Runtime Overhead. The runtime overhead is negligible,
with a maximum of 16 ms (3%), as shown in II. The additional
latency is manly brought by calculating of key,p,, and the
extra input feeding. ResNet50 and DenseNet121 have larger
latency difference because their layers we protect have more
weights, which need more time to calculate key . The more
inputs we compute, the bigger the gap will be between latency
overhead of modified model and the regular model. However,
we believe the runtime overhead is negligible, which cannot
be perceived by app users.

B. Evaluation on Real world Apps

To evaluate whether MMGuard can be adopted to real world
apps, we use MMGuard to protect the DNN models in 58
popular apps collected from Google.

TABLE I: The Latency Comparison for Initialization Stage.

Model H Original(ms) | Modified(ms)
InceptionV3 1131 1830(+62%)
MobileNet 244 356(+50%)
NasNetMobile 441 677(+54%)

ResNet50 1388 2340(+69%)
DenseNet121 474 721(+52%)

TABLE II: The Latency Comparison for Running Stage.

Model || Original(ms) | Modified(ms)
InceptionV3 425 428(+0.7%)
MobileNet 227 229(+0.9%)
NasNetMobile 579 584(+0.9%)
ResNet50 540 556(+3.0%)
DenseNet121 620 636(+2.6%)

Overall, 37 of the 58 apps can be protected successfully by
MMGuard without providing any additional information. We
further manually investigate why MMGuard fails to injecting
the verification logic of the remaining apps and observe the
following reasons. (1) Model decoding error. Some apps were
failed when we tried to decode the model may because the
model used a customized file format, the app used an unknown
version of deep learning framework or the model was broken.
(2) Unsupported model type. We choose convolutional layer
as protect target, which is mainly used in CNN for image
processing. Some apps may be designed for task like text
classification or used a variety of convolutional layer. (3)
Unsupported OP type. Some apps used OPs that were
not registered in the DL framework binary running on our
computer. The failures are mainly caused by the compatibility
of our proof-of-concept implementation, which can be easily
addressed with the support of app developers. Our tool can be
easily adapted to other types of DL tasks and the model owner
can easily add supports for more types of OPs. Therefore, in
real-world usage scenario, app developers can use MMGuard
to automate the model protection on their released apps
conveniently.

V. DISCUSSION AND USAGE SCENARIO

Prior work had discussed mainly two types of methods for
model ownership protection. The first type of method embed
model owner’s signature into weights by training model with
additional regularization terms [4]. The second method is
training model using adversarial samples and specific labels
[5]. The owner’s signature can be represented by the input
sample and its unique predict result. However, there are some
limitations in existing tools. First, almost all the methods need
to be applied during training (or fine-tuning) phase. Thus, they
are inapplicable for a released app as its model’s parameters
are frozen and training metadata is unknown and they may
sacrifice the accuracy of the model. Second, most methods
can not prevent the model from being stolen, but only can
help to prove ownership of the model after suffering losses.

Moreover, it has been proved that some methods are not
robust enough when facing distillation Attack [6], removal
attacks and ambiguity attacks [7]. This means the detection
accuracy of signatures embedded in DNN models may be
greatly reduced, or it is possible to forge counterfeit signatures.
Unlike existing methods, our tool does not require model
training or any knowledge of training data in that we can
directly modify compiled models. Our tool will terminate
model utilization before piracy or tampering behaviors cause
any loss. Also, we do not need to change any code of the
mobile app itself, as all the changes are in DL framework.
That is to say, our method can be not only used in develop
stage of apps, but also applied on released apps. App users and
developers could all benefit from MMGuard. App users could
be prevented from bad user experiences or security threats,
and app developers can protect their intellectual property.

VI. CONCLUSION

We present a tool, MMGuard, to protect on-device DNN
models mainly by adding extra input branches which taking
owner-related signature information as input. We can turn the
problem of protecting a large model file into the problem of
protecting a small signature information. The performance of
model will be significantly deteriorated when feeding wrong
signature information. Unlike other existing methods which
may be time-consuming and do harm to model accuracy, the
approach in MMGuard does not require model training or
any knowledge of training data. Experiment results show that
MMGuard is both available for apps under developing and
already released with negligible impact on user experience.

REFERENCES

[1] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain,” arXiv preprint arXiv:1708.06733, 2017.

[2] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang,
and X. Zhang, “Trojaning attack on neural networks,”
in 25th Annual Network and Distributed System Security
Symposium (NDSS), 2018, pp. 18-221.

[3] Google, “Tensorflow,” https://www.tensorflow.org/, 2020.

[4] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Em-
bedding watermarks into deep neural networks,” in Pro-
ceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, ser. ICMR °17, 2017, p. 269-277.

[5] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet,
“Turning your weakness into a strength: Watermarking
deep neural networks by backdooring,” in Proceedings
of the 27th USENIX Conference on Security Symposium,

ser. SEC’18. USA: USENIX Association, 2018, p.
1615-1631.
[6] Z. Yang, H. Dang, and E. Chang, “Effectiveness

of distillation attack and countermeasure on neural
network watermarking,” CoRR, vol. abs/1906.06046,
2019. [Online]. Available: http://arxiv.org/abs/1906.06046

[7] L. Fan, K. Woh Ng, and C. S. Chan, “[Extended version]
Rethinking Deep Neural Network Ownership Verification:
Embedding Passports to Defeat Ambiguity Attacks,” arXiv
e-prints, p. arXiv:1909.07830, Sep. 2019.

