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Abstract
Large Multimodal Models (LMMs) have shown significant

progress in various complex vision tasks with the solid lin-

guistic and reasoning capacity inherited from large language

models (LMMs). Low-rank adaptation (LoRA) offers a promis-

ing method to integrate external knowledge into LMMs,

compensating for their limitations on domain-specific tasks.

However, the existing LoRA model serving is excessively

computationally expensive and causes extremely high la-

tency. In this paper, we present an end-to-end solution that

empowers diverse vision tasks and enriches vision applica-

tions with LoRA LMMs. Our system, VaLoRA, enables accu-

rate and efficient vision tasks by 1) an accuracy-aware LoRA

adapter generation approach that generates LoRA adapters

rich in domain-specific knowledge tomeet application-specific

accuracy requirements, 2) an adaptive-tiling LoRA adapters

batching operator that efficiently computes concurrent het-

erogeneous LoRA adapters, and 3) a flexible LoRA adapter

orchestration mechanism that manages application requests

and LoRA adapters to achieve the lowest average response

latency. We prototype VaLoRA on five popular vision tasks

on three LMMs. Experiment results reveal that VaLoRA im-

proves 24-62% of the accuracy compared to the original

LMMs and reduces 20-89% of the latency compared to the

state-of-the-art LoRA model serving systems.
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1 Introduction
Encouraged by the success of LLMs in NLP applications [7,

8, 10, 13, 56], Large Multimodal Models (LMMs) [11, 12, 100]

have attracted great attention from both academia and in-

dustry. They enhance LLMs by perceiving and interpreting

multimodal signals (e.g., visual inputs [19, 60, 74]) andwell ac-
complish many complex multi-modal tasks that prior models

cannot. For example, GPT-4o [12] achieves leading accuracy

on many multimodal tasks such as visual question answer-

ing [37]. Yet when applied to practical applications requiring

domain-specific knowledge, LMMs often show suboptimal

performance, similar to the early LLMs that experienced

hallucinations [97].

Low-rank adaptation (LoRA) [30, 40] provides a promis-

ing way to integrate the external knowledge into LMM. It

fine-tunes a small portion of model parameters, known as

LoRA adapters, on domain-specific datasets to learn target

knowledge, and freezes the base model to preserve its orig-

inal capability (more in §2). LLMs often leverage retrieval-

augmented generation (RAG) [52] to meet this goal. Un-

like LoRA, which modifies model parameters, RAG appends

the retrieved knowledge (e.g., documents) onto requests

(i.e., input data) for accurate response. However, this data-
augmented method is not appropriate for time-sensitive vi-

sion applications. Its retrieval process and appended long-

context requests incur >10× response delay [44]. Conversely,

LoRA merges fine-tuned adapters into LMMs at runtime and

efficiently generates high-quality and consistent domain-

specific responses without additional overhead.

Despite these advantages of LoRA, it introduces complex

system challenges. Recent work [25, 69, 82], focusing on sys-

tem optimization for linguistic applications with LoRA LLM,

has made noticeable progress. Punica [25] and S-LoRA [69]

propose unmerged inference to overcome the limitation of

merged inference that can merge only one adapter at once. It

computes multiple LoRA adapters in parallel while batching

the shared base model computation across different requests,

to boost system efficiency. dLoRA [82] further balances the

throughput and latency by merged and unmerged inference

mode switch (more in §2). However, these efforts fail to meet
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the high efficiency and diverse requirements of vision appli-

cations (more in §3.2).

In this paper, we answer the following research question:

Can we leverage LoRA LMMs to enrich vision applications
while meeting their performance requirements? We argue that

yes, but need to tackle the following challenges.

First, many existing small models, trained on domain-

specific datasets and used in current vision applications,

outperform LMMs on target tasks. To keep accuracy, their

knowledgemust be integrated into LMMwith LoRA adapters.

However, simply training one LoRA adapter for each task is

uneconomical, while fusing too much external knowledge

(e.g., multiple small models) into a single adapter causes

inevitable accuracy degradation.

Second, a vision application often involves diverse exter-

nal knowledge. When serving multiple vision applications,

in particular, LoRA LMM is very likely asked to execute mul-

tiple LoRA adapters simultaneously. Although unmerged

inference can compute heterogeneous adapters in parallel,

they introduce excessive delays. Therefore, our LoRA LMM

inference system must efficiently compute concurrent het-

erogeneous adapters with low latency.

Lastly, different vision applications have distinct perfor-

mance requirements. Real-time video analytics application

[92, 93] needs low latency, while visual retrieval [45] prefers

high throughput. To meet these needs, carefully managing

LoRA adapters and flexibly scheduling application requests

is necessary. Typical LoRA adapter manager (e.g., dLoRA) is
not designed for vision applications, which incurs excessive

overhead. Solely its inference mode switcher costs over half

of LMM inference time.

This paper presents VaLoRA, an end-to-end LoRA LMM

serving system, including LoRA adapter preparation (§4.2)

and inference runtime (§4.3, §4.4), to empower vision appli-

cations. VaLoRA addresses the above challenges with the

following techniques:

Accuracy-aware LoRA adapter generation. We propose a

LoRA generator (§4.2) that prepares domain-specific LoRA

adapters to generate accurate results on target tasks with

external knowledge. Considering the complex accuracy vari-

ations of knowledge fusion (§3.2), LoRA adapters generation

can be formulated as a constrained bin packing problem, that

given external knowledge, i.e., small models and domain-

specific datasets, to generate the minimum number of LoRA

adapters, ensuring the accuracy specified by vision applica-

tions. We design an accuracy-aware knowledge-fusion algo-

rithm with a greedy heuristic to solve it. Additionally, we

introduce vision task heads, incorporated as part of the LoRA

adapter, enabling low-latency response for vision tasks.

Adaptive-tiling LoRA adapters batching.We propose a con-

current LoRA adapters batching method (§ 4.3), comprised of

the Adaptive-Tiling Matrix Multiplication (ATMM) operator

and its optimal tiling search algorithm, for efficient hetero-

geneous LoRA adapters computation. The offline search al-

gorithm identifies the optimal tiling configurations for each

possible input matrix shape, builds a hash table storing these

input-optimal tiling pairs, and compiles their code implemen-

tations for standby. At runtime, ATMM adaptively selects

the optimal tiling configuration in the hash table, according

to the input shapes of both concurrent requests and invoked

LoRA adapters, then executes the corresponding code imple-

mentation in an extreme efficiency.

Flexible LoRA adapters orchestration. For diverse require-
ments of vision applications, we propose an orchestrator

(§4.4) that efficiently and flexibly orchestrates LoRA adapters

at runtime. Two tools are developed to facilitate high effi-

ciency. A switcher leverages ATMM and unified memory

management to enable swift inference mode switch and

LoRA adapters swap, and a mixture inference mode, deLoRA,

mitigates the starvation. Using the above tools, we design

an algorithm to dynamically switch between three inference

modes, schedule requests, and manage LoRA adapters to

satisfy the performance requirement of each application.

We summarize our key contributions as follows:

• To the best of our knowledge, we are the first to identify
and solve the key problems in empowering vision applica-

tions with LoRA LMM.

• We prototype VaLoRA
∗
that enables accurate, efficient,

and flexible LoRALMMserving for vision applications, which

involves accuracy-aware LoRA adapter generation, adaptive-

tiling LoRA adapters batching, and efficient and flexible LoRA

adapters orchestration.

• We implement VaLoRA and conduct evaluations for five

popular analytical tasks with real-world trace on three LMMs.

Experimental results show that VaLoRA achieves 24-62%

accuracy improvement compared to the original LMMs, and

20-89% latency reduction compared to the state-of-the-art

methods.

This work does not raise any ethical issues.

2 Background
Vision applications in today exploit AI technology to pro-

cess images or videos in RGB spaces [49, 67, 95]. In video

analytics, for instance, multiple DNNs that are well-trained

on domain-specific datasets separately take care of one tar-

get task and together serve the application well [46, 47, 91].

However, the limited capabilities of small models hinder the

development of vision applications. Current applications yet

stay on the simple combination of vision tasks such as image

classification [92], vehicle counting [57], and target detec-

tion [31]. With the natural language interface inherited from

LLM, LMM can enrich future vision applications. For exam-

ple, serving by LMM, the police officer can find the right

target when only given a text-described query such as “A

∗
Our code is available at https://github.com/mi150/VaLoRA

https://github.com/mi150/VaLoRA
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Figure 1. Illustration of LMM inference. Qwen-VL-7B [20]
generates the right action recognition answer to a piece of data
from UCF-101 dataset [72] and the corresponding prompt.

boy wearing a red sweater lost at the corner”. Therefore, this

paper tries to empower vision tasks with LoRA LMM and

enrich future vision applications.

Largemultimodalmodels (LMMs) aim to achieve stronger

general intelligence via extending LLMs with multimodal

inputs. Since more than 80% of human beings’ perception

and activities are mediated through vision [63], it is natu-

ral to start the exploration by equipping LLMs with “eyes”.

By introducing a visual receptor, comprised of a visual en-
coder (e.g., ViT [65]) and a vision-language projector (e.g.,
Q-former [53]), LMMs power LLMs with visual capacity. Fig.

1 illustrates the inference procedure of LMMs. Given an im-

age input and its prompt, the visual encoder splits the image

into small patches (e.g., 14×14 pixels block) and extracts the

visual features of each. The vision-language projector then

converts patches’ visual features into visual tokens and feeds

into LLM [17, 28, 42, 77], together with the embedded text

tokens from the prompt, to generate the answer. LLM maps

the input into high-level features and predicts the probability

distribution of the next token with the language modeling
(LM) head in an autoregressive pattern [50, 89]. As the dotted

arrows depicted in Fig. 1, it iteratively generates tokens with

input tokens and previous output tokens once a time, until

an end-of-sentence (<EOS>) token is emitted.

Low-rank adaptation (LoRA) [23, 30, 40] is a widely used

parameter-efficient fine-tuning method [61] to integrate the

external knowledge into large models. The LoRA adapter is

a small number of trainable parameters to learn this knowl-

edge, typically placed in attention layers [40]. The core of

LoRA, as illustrated in Fig. 2(a), is to represent each weight

update Δ𝑊 as a product of two matrices, 𝐴 and 𝐵, with di-

mensions 𝑟 ×𝑑 and 𝑑 × 𝑟 , respectively. Their ranks are much

smaller than the base model weight𝑊 , with dimensions𝑑×𝑑 .
This makes sense since the low intrinsic rank phenomenon

of weight updates in large models [40]. When fine-tuning,

LoRA adapters only update𝐴 and 𝐵 while keeping𝑊 frozen.

At inference, the computation of all LoRA adapters can be

(a) Unmerge mode. (b) Merge mode.

Figure 2. LoRA model inference. (a) Unmerge mode supports
computing multiple different LoRA adapters in a batch. 𝐴1

and 𝐵1 constitute LoRA adapter #1. (b) Merge mode supports
no-extra-delay inference but only one adapter at once.

placed bypass, as shown in Fig. 2(a), and only adds the results

onto the output. Or merge one multiplied matrix 𝐵 ×𝐴 (i.e.,
Δ𝑊 ) into base model𝑊 , which keeps computation overhead

the same as the base model in Fig. 2(b).

LoRA models serving system [25, 69, 82] targets to im-

prove LoRA model inference efficiency. In unmerged infer-

ence, the core characteristic is that computing two small

matrices of the adapter underutilizes GPU computing units,

leading to unnecessary delay and resource waste. To tackle

this, Punica [25] and S-LoRA [69] batch multiple heteroge-

neous adapters, as the cascade LoRA adapters illustrated

in Fig. 2(a), and compute them within one single custom

CUDA kernel. This method boosts the system throughput

indeed but causes significant additional overhead (more in

§3.2). dLoRA [82] merges the most accessed LoRA adapter

into the base model and switches to unmerge if necessary.

However, its mode switch causes an unacceptable time cost

(more in §3.2). Besides, like Punica and S-LoRA, dLoRA’s

unmerged inference also fails to address the large number

of extra computation overhead.

3 Motivation and Challenges
This section explores two questions: (1) What benefits can

LoRA LMM bring to vision applications (§3.1)? (2) What chal-

lengesmust be tackled when empowering vision applications

with LoRA LMM (§3.2)?

3.1 Potential Benefits from LoRA LMM
LMMs offers state-of-the-art performance on many
complex vision tasks. To demonstrate it, we take zero-

shot grounding and visual question answering as examples,

and conducted experiments on Aircraft [9] and VQAv2 [38]

datasets with Qwen-VL-7B [20] (as the LMM), YOLO [33]

and OSCAR [55] (as the baseline small models). Aircraft con-

tains 103 remote sensing images that are not pre-trained

on Qwen-VL and YOLO, being the zero-shot test; VQAv2 is

the most popular visual question answering dataset which

includes text and visual modalities, to test the multi-modal



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Mi et al.

(a) Zero-shot Grounding re-

sults on data #38 in Aircraft

dataset [9].

(b) Visualization of data

#133279 in Visual Question

Answering [38].

Figure 3. The potential of LMM. (a) To ground the airplanes in
remote sensing view in zero-shot, LMM Qwen-VL, in general,
delivers 67.2% accuracy v.s. the 18.3% of YOLO [33]. (b) In VQA,
Qwen-VL yields 78.8% accuracy v.s. the 73.3% of OSCAR [55].

Figure 4. LoRA adapters with domain-specific knowledge im-
prove the Qwen-VL’s accuracy on target tasks.

ability. Fig. 3 shows that, with the solid linguistic and rea-

soning capabilities inherited from LLMs, Qwen-VL greatly

outperforms small models. It delivers 48.9% higher F1-score

in zero-shot grounding than YOLO. Fig. 3(a) visualizes the

results on data #38, where Qwen-VL bounds more accurate

boxes than YOLO. For multi-modal tasks, Qwen-VL achieves

78.8% accuracy, being 7.5% higher than OSCAR. Fig. 3(b) ex-

emplifies a typical vehicle counting task in video analytics

applications, only Qwen-VL generates the correct answer.

With external knowledge from LoRA adapters, LMM
attains remarkable accuracy gain on domain-specific
tasks. To investigate the accuracy improvement from exter-

nal knowledge, we fine-tune three LoRA adapters for image

classification, object detection, and video classification, re-

spectively, on external datasets, AID [83], Aircraft [9], and

UCF101 [73]. Fig. 4 shows the results. With fine-tuned LoRA

adapters, Qwen-VL receives 45.2%, 24.5%, and 62.2% accuracy

gains on three domain-specific task, respectively. Note that

we only validated the potential gain without fully exploring

advanced training techniques like data enhancement [94].

Nevertheless, based on current results, we believe these tech-

niques could further improve accuracy in future work.

LoRA LMM enables more flexible serving. Today’s vi-
sion applications are served by many domain-specific small

models [49, 67]. When invoked, the specific model is loaded

Figure 5. Accuracy decreases when fusing knowledge from
multiple domain-specific small models into one single LoRA.
The trend varies regarding vision tasks.

into GPU and swapped out to main memory after execu-

tion [21, 68]. This swapping method allows model execution

in a large batch but incurs inevitable transmission costs.

LoRA adapters usually have fewer parameters than small

models (more in §4.4.1). Swapping them while keeping LMM

inGPU provides amore flexible serving. In our test, swapping

an adapter saves 97% delay than OSCAR, 15ms v.s. 520ms,

and 86% of YOLO’s 110ms.

3.2 Challenges of EmpoweringVisionApplications
with LoRA LMM

To empower diverse vision applications, the LoRA LMM sys-

tem must offer accurate and efficient responses to the vision

tasks involved and meet the distinct application-specified

performance requirements. To this, we face three challenges.

C1: Limited capacity of LoRA adapter. Integrating
external knowledge from existing small models or specific

datasets into LMM is essential to generate accurate results.

Parameter-efficient fine-tuning LoRA adapters show promise.

However, it is challenging because the LoRA adapter has only

limited capacity and varies on the vision tasks. Fig. 5 demon-

strates this by fusing external knowledge from different num-

bers of small models on diverse tasks into a single LoRA

adapter (experiment setup details in §6.1). Training a sepa-

rate adapter for each small model consistently achieves high

accuracy but results in significant adapter capacity waste,

while fusing too many small models into one adapter incurs

significant accuracy degradation. For example, the LoRA

adapter that fuses six image classification models in Fig. 5 re-

tains over 95% accuracy, while fusing six video classification

models decreases remarkable accuracy.

C2: Inefficient concurrent requests batching. One vi-
sion application often involves multiple small models [31, 43].

Hence, serving multiple vision applications with LMM very

likely leads to the simultaneous invocation of multiple het-

erogeneous LoRA adapters. However, current LoRA model

inference systems struggle to process them efficiently, par-

ticularly under high concurrency. To demonstrate this, we

measure three state-of-the-art systems. Punica [25] and S-
LoRA [69] customize CUDA operator, respectively, to batch

heterogeneous LoRA adapters computation in unmergemode
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Figure 6. Unmerged inference
causes 27-140ms extra latency
equivalent to 40-61% of base
model inference time.

Figure 7. Mode switch alone
costs 53ms, occupying 64% of
merged inference time of three
256-tokens requests.

(more details in §4.3.1), while dLoRA [82] calls PyTorch op-

erator Einsum† [3]. The experimental workload randomly

generates 2-4 requests ranging from 128 to 1024 length of

input tokens per second, and we repeat 1,000 times to mea-

sure the latency. For fairness, all experiments run on a server

device equipped with NVIDIA A100 GPU [2] via PEFT [61]

framework, and use Qwen-VL-7B [20] as the base model.

Fig. 6 plots the results. The bars of dLoRA, S-LoRA, and

Punica denote their extra latency than the merged infer-

ence, e.g., 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝐿𝑜𝑅𝐴 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑚𝑒𝑟𝑔𝑒 . The bar of the base

model denotes its time cost under the same workload. Un-

merged inference yields up to 140ms additional latency when

serving four 1024-token requests. This unnecessary waste

is sufficient for the base model to perform 4x256 inference,

with resources to spare! The reason for such a high cost is

two-fold. 1) Inherently, additional overhead stems from two

additional matrix multiplications and one additional matrix

addition per layer as depicted in Fig. 2(a); meanwhile, these

computations run in parallel with the base model computa-

tions, each layer requires additional CUDA kernel context

operations at each layer. 2) Upon concrete implementations,

all three LoRA adapters batching operators fail to fully utilize

computing units in GPU, due to the significant padding or

ill-considered matrix tiling (more in §4.3.1).

C3: Inflexible LoRA adapters orchestration. To cope

with the distinct performance requirements specified by vi-

sion applications, an orchestration that can carefully manage

LoRA adapters and flexibly schedule application requests is

necessary. We believe the inference mode switch like dLoRA

is promising, yet it falls significantly short of efficiency. Its

mode switch yields unacceptable overhead. Fig. 7 illustrates

a real scheduling state and mode switch latency for two con-

secutive inference slots of dLoRA. In this case, dLoRA serves

8 requests, each with an input length of 256, in a first-come-

first-service manner. In the first slot, dLoRA serves requests

1-3 in merge mode using the same LoRA adapter, and the

heterogeneous requests 4-7 are processed in an unmerged

mode in the following slot. A mode switch delay of over 53

ms makes the last request (the dotted arrow in Fig.7) have to

†
Einsum uses Einstein summation convention [32], describing tensor index

operations in a concise string form, for efficient LoRA adapter batching.
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ATMM
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Batch

ATMM

<Lat. Requirements, Requests>

Figure 8. VaLoRA overview.

wait 165ms until the next inference slot begins. This signifi-

cant cost stems from 1) unnecessary memory copy of LoRA

matrices due to dLoRA’s inefficient memory management,

and 2) the substantial overhead of LoRA matrices Δ𝑊 com-

putation, by matrix multiplication𝐴×𝐵, then added (merge)

or subtracted (unmerge) Δ𝑊 onto or from the base model, by

invoking torch.addmm, per layer. Conceivably, if the mode

switch can be reduced to <10ms (as this paper achieved in

§4.4.1), the average response time of Fig.7 case can save 45ms,

with the last request only need to wait <80ms.

4 VaLoRA Design
VaLoRA is an end-to-end system that empowers diverse

vision tasks and enriches vision applications with LoRA

LMM by addressing the above challenges. We first provide

an overview of VaLoRA’s operation, then describe three core

techniques it leverages.

4.1 System Overview
VaLoRA includes two phases. During the offline phase, the

accuracy-aware LoRA adapter generation approach takes the

external knowledge, from the existing domain-specific small

models or datasets, as well as the accuracy requirements

specified by vision applications (as the dotted arrows plotted

in Fig.8), to generate the minimum number of LoRA adapters

(§4.2). The generated LoRA adapters are rich in domain-

specific knowledge that can output accurate responses to

tasks involved in vision applications.

During the online phase, the flexible LoRA adapter orches-

tration ingests the requests from vision applications (as the

solid arrow plotted in Fig.8), organizes them into batches,

chooses the inference mode, and orchestrates their corre-

sponding LoRA adapters, to minimize the average response

latency while guaranteeing each vision application’s latency

constraint (§4.4). Each request batch is delivered to the corre-

sponding adapters and LMMand inferred in the chosenmode.

The LoRA adapter batching and inference mode switcher

are implemented with ATMM, the adaptive-tilling matrix

multiplication operator (§4.3), achieving high efficiency.
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Figure 9. Accuracy-aware LoRA generation integrates the
domain-specific knowledge into LoRA adapters with the pro-
posed accuracy-aware knowledge-fusion algorithm.

4.2 Accuracy-aware LoRA Adapter Generation
To offer accurate results on domain-specific tasks, we pro-

pose the accuracy-aware LoRA adapter generation consisting

of an accuracy-aware knowledge-fusion algorithm and the

vision task head.

4.2.1 Accuracy-aware knowledge-fusion algorithm.
To make it easy to manage at runtime, we aim to integrate

external knowledge into the fewest LoRA adapters without

violating the accuracy requirements of any vision tasks. To

this end, the training method must account for the limited

capacity of the LoRA adapter and the complex accuracy

variations arising from the knowledge fusion.

This problem is highly challenging. Suppose we have an

oracle who knows the accuracy of a LoRA adapter that fused

arbitrary knowledge combinations in advance. Then, the

problem can be formulated as a constrained bin-packing prob-
lem [36], where the objective is to pack the knowledge into

the minimum number of LoRA adapter bins, ensuring each

adapter maintains each vision task’s accuracy beyond the

requirement. However, this relaxed variant is NP-hard, and

unfortunately, such an oracle does not exist.

To solve the original problem, we propose a simple and

easy-to-implement heuristic algorithm, the accuracy-aware
knowledge-fusion algorithm, to determine which knowledge

fuses into one LoRA adapter. It first collects the dataset,

as illustrated in Fig. 9, by executing representative data on

every existing domain-specific small model; if applications

provide the datasets, we directly use them. After that, the

training process is a standard supervised learning pipeline

that computes the cross-entropy loss, 𝐿 = 𝐶𝐸 (𝑦,𝑦), for pa-
rameter update. The knowledge fusion employs greedy and

accuracy-aware heuristics. It begins with a random dataset

and sequentially uses each dataset to train the LoRA adapter

until its accuracy on a specific task falls below the required

threshold. If this occurs, the adapter’s weights are rolled back,

and a new adapter is initialized to learn from the most recent

dataset. The worst case of such a method may generate one

LoRA adapter for each dataset, but in our practical experi-

ments, every LoRA adapter fuses 4 domains of knowledge

(datasets) on average.
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Figure 10. An example of fusing the knowledge from six object
detection models, each detects one class of object, with the
accuracy-aware knowledge-fusion algorithm.

Fig. 10 illustrates an example of integrating the knowledge

of six object detection models, each detecting one class of tar-

get, into LoRA adapters. When fusing the vegetation-detect

model (Step ④), the accuracy of LoRA adapter 1 fails on the

license plate, needs above 80%, and traffic sign detection,

85%. Hence, the algorithm returns the LoRA adapter 1 of the

previous state and initializes LoRA adapter 2 (Step ⑤). As

the vegetation, bicycle, and person datasets are fused into

LoRA adapter 2 without accuracy violation, we get the sec-

ond LoRA adapter (Step ⑥). As LMM has powerful learning

abilities, the training procedure costs only 25 minutes in this

example. We leave the exploration of this to the future.

4.2.2 Vision task head. To reduce the inference latency,

we design the vision task head. It is designed as a trainable

linear layer as a part of the LoRA adapter, as shown in Fig. 11,

to predict task-specific results based on the output features of

LMM. Vision task heads can be flexibly customized to various

vision tasks during the LoRA adapter training
‡
, e.g., action

recognition head in Fig. 11, provided the fusing knowledge

is from the same task type. Fig. 11 compares doing action

recognition with the original language modeling (LM) head

and the vision task head. By replacing LM head with the

vision task head, LMM saves 4 inference rounds, around

180ms time cost. The reason to do so is that the outputs of

a large portion of vision tasks are a limited discrete set of

candidate options, such as the number of vehicle counts [57],

classes of action recognition [92], and binary query for a

specific target on image or video [88].

We retain the LM head for vision applications that need

the natural language interface. For example, when video

query applications ask for “A boy wearing a red sweater

lost at the corner” and specify the person detection, VaLoRA

will invoke the corresponding LoRA adapter containing a

‡
As the vision task head is served as a part of the LoRA adapter, it is included

in the cost of training a LoRA.
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Figure 11. Vision task head. Replacing the original language
modeling head in LMM with vision task head reduces 4 rounds
of LMM inference on the action recognition task of Fig. 1.

Tiling
Configuration

Input ①

(256×4096, 4096×32)
Input ②

(8192×4096, 4096×128)

Punica [25]

(16, 64, 64, 16, 16, 64)

0.087ms

Low SM Utilization

0.19ms

Freq. Global Mem. Access

Config ①

(64, 32, 32, 32, 32, 32)

0.07ms 0.12ms

Freq. Global Mem. Access

Config ②

(64, 64, 64, 32, 64, 64)

0.13ms

Low SM Utilization

0.10ms

Table 1. Adaptive tiling saves remarkable computing time
compared to static-tiling Punica. Configuration (a,b,c,d,e,f)
indicates the thread block tile a×b, b×c, and warp tile d×e, e×f.
We omit thread tile to save space. Input (u×v, s×t) indicates
input matrix shapes. The text under latency explains why this
configuration performs poorly under corresponding input.

detection head for efficient response
§
. By using the LoRA

adapters batching operator, ATMM, in the next section, these

different vision task heads can be executed concurrently, as

well as in parallel with the LM head.

4.3 Adaptive-tiling LoRA Adapters Batching
Serving vision applications with LMM very likely invokes

heterogeneous LoRA adapters concurrently. To compute

them in high performance, we propose an Adaptive-Tiling

Matrix Multiplication operator, ATMM, enabling efficient

unmerged inference, inference mode switching (§4.4.1), and

mixture inference mode (§4.4.2).

4.3.1 ATMM: Adaptive-tiling matrix multiplication
operator. Directly batching heterogeneous adapters com-

putation upon standard kernels, as batched GEMM (General

Matrix Multiplication) in dLoRA [82], is feasible, but yields

excessive latency and hardware underutilization. This stems

from the significant padding arising from the heterogene-

ity of application request lengths and LoRA adapter ranks.

Hence, a customized kernel is necessary.

To motivate our design, we first analyze two existing cus-

tomized kernels from S-LoRA [69] and Punica [25], respec-

tively. S-LoRA’s kernel utilizes tiling technique to avoid the

§
Some work, e.g., task automation [56, 80] and dynamic LoRA [34], auto-

matically identify adapters from queries. They are orthogonal to VaLoRA.

8×tile#, 8×shared 
mem. load/store 

4×tile#, 4× 
global mem. R/W 8192×4096 4096×128

Memory Hierarchy Global Mem. Shared Mem. Register File

Tile #: (512×64)×(64×2) (1×4)×(4×1)

64×64 64×64 32×64 64×64

Tile #: (128×64)×(64×2) (2×1) ×  (1×1)

Thread Block Tile Warp Tile per BlockTwo Multi. Matrics

16×64 64×64 16×16 16×64
Input ②

Punica

Input ②

Config ②

(a) Under heavier Input ②, Punica’s tiling (upper half) yields more tiles, so

more costly memory read/write compared to Config ② (lower half).

Input ①

Config ②

Input ①

Config ①

Tile #:  (4×64) ×  (64×1)
256×4096 4096×32

(2×1)  ×  (1×1)

>
>

64×32 32×32 32×32 32×32

Tile #: (4×128) × (128×1) (2×1)  ×  (1×1)
Padding & Use only 64 out of A100’s 108 SMs 

64×64 64×64 32×64 64×64
Padd
-ing

(b) But under lighter Input ①, Config ② (lower half) cannot deliver good

performance because it underutilizes SM since fewer block number.

Figure 12. Paired comparison of tilling configurations in Ta-
ble 1. Following tiling configurations, two multiplied matrices
are divided into thread block tiles and further warp tiles. The
data in each tile is transferred to their corresponding memory.

significant padding. Unlike batched GEMM, which pads het-

erogeneous input matrices to a uniform shape, it splits them

into fine-grained blocks and computes the output for each

block in parallel on CUDA cores. Punica’s kernel also em-

ploys the tiling technique and further enhances efficiency

by leveraging the well-developed CUTLASS [15] library and

higher-performance Tensor cores [16]. However, as the moti-

vational study in §3.2, both kernels fail to achieve satisfactory

efficiency. The root cause is their static tiling configurations,

which are inadequate to handle diverse input shapes, result-

ing in underutilized computational resources.

Our key observation is that the computational efficiency

varies significantly with different tiling configurations. We

conduct an experiment with two input shapes and three

tiling configurations and present the results in Table 1. Un-

der Input ① and Input ②, three tiling configurations yield the

most 1.9× latency difference. This stems from the inappro-

priate tiling against input shape and hardware architecture,

as well as between tiling levels. Fig. 12 compares two con-

figuration pairs in Table 1. In Fig.12(a), Punica’s smaller-tile

configuration producesmore thread block tiles andwarp tiles.

Compared to Config ②, it results in more frequent accesses

to global and shared memory, so more launching data trans-

fer times incur Punica’s 1.9× latency. However, larger tile

does not always benefit. In Fig.12(b), Config ②’s large tiling

incurs Streaming Multiprocessor (SM) under-utilization. It

can only utilize 64 of 108 SMs in A100, as each thread block

tile can only fetch one SM, far less than Config ①. In sum,

we need dynamic tiling to achieve efficiency.

We propose ATMM, an adaptive-tiling matrix multiplica-

tion CUDA kernel that fully utilizes computational resources,
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achieving efficient heterogeneous LoRA adapters batching.

It has two key design choices. (1) Adaptive tiling against

input shapes. Given two input matrices, ATMM retrieves

the optimal tiling configuration from the hash table (estab-
lished in §4.3.2), and following this configuration, divides

the matrix into thread block tiles, then further into warp
tiles¶. (2) Pipeline data loading and computing. After tiling,

ATMM transfers the data of each tile to their correspond-

ing memories, the correspondence as shown in Fig. 12(a),

and executes computation on CUDA/Tensor cores with the

corresponding executable kernel (pre-compiled in §4.3.2).

To hide data loading latency, ATMM allocates double the

space in shared memory and register file for each tile: one

for the current tile’s computation and one for prefetching

the next tile’s data. Note that such double buffering refers to

the use of dual buffers in shared memory, an on-chip cache

(e.g., 20MB in A100) independent from GPU memory (e.g.,
80G in A100). It is essentially a cache usage strategy without

incurring global memory overhead. This double buffering

is feasible due to each level’s uniform tile shape, enabling

efficient location of the next tile.

4.3.2 Profile-based optimal tiling search. Keeping the
benefit of adaptive tiling in mind, we aim to search out the

optimal tiling configuration for every different input and

switch among them at runtime. This can be done offline, as it

is only affected by input shapes rather than their numerical

values. Some prior work [71, 85, 101] though studied the

optimal tiling for matrix multiplication, it is still challenging

as the complicated GPU thread parallelism mechanism and

memory access patterns, and the large search space of input

shapes.

To tackle this challenge, we approach the search as a black-

box problem and propose a profile-based searching algorithm.

It profiles the execution time for all possible ATMM input ma-

trix shapes with the help of CUTLASS Profiler [15], records

the optimal tiling configurations in a hash table, and com-

piles corresponding executable kernels. We use the following

expert knowledge to reduce the search space. (1) From the

hardware perspective, architectural characteristics restrict

the feasible input shapes, e.g., limited memory of each hi-

erarchy, and tiling configurations, e.g., every dimension of

tile at least 16 and must be powers of two. (2) From the

perspective of input data, the model dimensions of LMMs

restrict the input matrix shape changing at large steps, e.g.,
4096 in Qwen-VL. By doing so, the search space can be re-

duced up to 20 times. For example, the total search space of

Qwen-VL on A100 is 50,000 configurations, calculated by

288 configurations (A100’s 36 common thread block shapes

× 4 warp configurations × 2 instruction shapes) according to

CUTLASS documentation [15] and Qwen-VL model’s 2048

maximum context length, reduced down to 3,000. Appx. A

shows the detailed algorithm. With our algorithm, searching

¶
Each warp can be divided into thread tiles in <16,8,16> or <16,8,8> shape.

Fine-tuned
Model
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Figure 13. Mixture mode allows simultaneous execution of
unmerged and merged modes to alleviate starvation.

all optimal configurations for vision tasks with Qwen-VL on

A100 GPU only costs <30 minutes.

4.4 Flexible LoRA Adapters Orchestration
To meet distinct performance requirements of vision appli-

cations, we propose an orchestrator to schedule requests,

manage LoRA adapters, and switch inference modes, to en-

able efficient and flexible LoRA LLM inference runtime. We

first implement two tools with ATMM, a swift mode switcher

and a mixture inference mode, to facilitate the orchestrator.

4.4.1 Swift inference mode switch. As discussed in §3.2,

prior systems (e.g., dLoRA [82]) introduce excessive extra

latency during mode switch. To reduce these overheads, one

common method is pre-computing LoRA matrices (i.e.,, ma-

trix Δ𝑊 , 𝐵 ×𝐴) for the entire base model and storing them

in main memory, then swapping into GPU when needed.

However, such a mass of data, e.g., ∼3GB per LoRA of QWen-

VL-7B
∥
, incurs very high delay, ∼1s each, on swapping. Con-

versely, our swift mode switcher computes LoRA matrices

at runtime and stores adapters, i.e., 𝐴 and 𝐵, only 43MB

each, on GPU. It has two core designs. (1) Eliminate unneces-

sary memory copy with contiguous memory allocation. Our

switcher pre-allocates contiguous memory for weight matri-

ces, avoiding the memory copy in tensor reshape, enables

efficient in-place LoRA matrices un-/merge. (2) Compute all-

layer LoRA matrices and un-/merge them in one shot. With

ATMM, the switcher can efficiently compute LoRA matrices

of the entire model and add/subtract all of them onto/from

the base mode weights in one shot. By doing so, our mode

switch costs only <10ms, which speeds up dLoRA >5×.
4.4.2 Mixture inference mode. Compared to the un-

merged mode, merged inference supports only one LoRA

adapter at once, which results in the starvation of requests

from other vision tasks. To alleviate starvation, we propose

a novel inference mode, deLoRA, to enable the simultaneous

execution of merged and unmerged inference. As shown in

Fig.13, LoRA1 handles the requests in merged mode, while

other LoRA adapters, LoRA𝑥 , process their requests in un-

merged mode. To maintain the consistent results of LoRA𝑥 ’s

request, we introduce the deLoRA branch to prevent contam-

ination from LoRA1. The weight of deLoRA is the same as

∥
Layer#×Δ𝑊 ×precise, 32×4096×4096×FP16, Δ𝑊 ’s shape is same as LMM.
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Algorithm 1 Scheduling Policy

Input: Request 𝑅={𝑟1, ..., 𝑟𝑛 }, LoRA adapter 𝐿={𝑙1, ..., 𝑙𝑛 }, Infer mode𝑀

Output: The batch of requests to be executed 𝐵𝑛𝑒𝑥𝑡

1: function Scheduling(R, M, L)

2: 𝑅𝑠𝑡𝑎𝑟𝑣𝑒 = [𝑅𝑖 .𝑐𝑟𝑒𝑑𝑖𝑡 > 𝜃 𝑓 𝑜𝑟 𝑅𝑖 𝑖𝑛 𝑅 ]
3: 𝑙𝑒𝑛 = 𝑀𝑎𝑥𝐵𝑆 − |𝑅𝑠𝑡𝑎𝑟𝑣𝑒 |
4: 𝑅𝑚𝑒𝑟𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑖 ∈𝐿 {𝑟𝑖 ∈ 𝑅 |𝑟𝑖 .𝑙𝑜𝑟𝑎 == 𝑙𝑖 }
5: if |𝑅𝑠𝑡𝑎𝑟𝑣𝑒 |/𝑀𝑎𝑥𝐵𝑆 ≤ 0.5 and |𝑅𝑚𝑒𝑟𝑔𝑒 |/𝑀𝑎𝑥𝐵𝑆 > 0.5 then
6: if |𝑅𝑠𝑡𝑎𝑟𝑣𝑒 | == 0 then
7: 𝑀 = 𝑀𝑒𝑟𝑔𝑒 and ModeSwitch(𝑀 , 𝑅𝑚𝑒𝑟𝑔𝑒 .𝑙𝑜𝑟𝑎)

8: 𝐵𝑛𝑒𝑥𝑡 = 𝑅𝑚𝑒𝑟𝑔𝑒 [: 𝑀𝑎𝑥𝐵𝑆 ]
9: else
10: 𝑀 = 𝑀𝑖𝑥 andModeSwitch(𝑀 , 𝑅𝑚𝑒𝑟𝑔𝑒 .𝑙𝑜𝑟𝑎)

11: 𝐵𝑛𝑒𝑥𝑡 = 𝑅𝑠𝑡𝑎𝑟𝑣𝑒 + (𝑅𝑚𝑒𝑟𝑔𝑒 − 𝑅𝑠𝑡𝑎𝑟𝑣𝑒 ) [: 𝑙𝑒𝑛]
12: InitDELoRA(𝐵𝑛𝑒𝑥𝑡 )

13: else
14: 𝑀 = 𝑈𝑛𝑚𝑒𝑟𝑔𝑒 and ModeSwitch(𝑀 , )

15: 𝐵𝑛𝑒𝑥𝑡 = 𝑅𝑠𝑡𝑎𝑟𝑣𝑒 + (𝑅 − 𝑅𝑠𝑡𝑎𝑟𝑣𝑒 ) [: 𝑙𝑒𝑛]
16: return 𝐵𝑛𝑒𝑥𝑡

that of the merged LoRA. Based on the distributive property

of matrix multiplication, the correctness can be verified as

follows.

outputx = inputx × (Wmerge −WdeLoRA1 +WLoRAx )
= inputx × (Wbase +WLoRAx ),

in which Wmerge = Wbase + WLoRA1 , WLoRA1 = WdeLoRA1 ,

and W means the weight of the base model, deLoRA, and

LoRA adapter; inputx and outputx are the input and output

of the request of LoRA𝑥 . Overhead of computing𝑊𝑑𝑒𝐿𝑜𝑅𝐴1

is exactly the same as 𝐿𝑜𝑅𝐴1, and subtracting it introduces

very few overhead.

Mixture inference mode shows two advantages. 1) It does

not incur mode-switching costs from merged to unmerged

mode. 2) It costs less extra computation than unmerged in-

ference when there are more requests for the merged LoRA

adapter than others.

4.4.3 Scheduling policy. To minimize the average re-

sponse latency and meet each request’s latency constraint,

our orchestratormust carefully orchestrate requests, adapters,

and inference modes. Our policy follows a greedy heuris-

tic which includes two principles. (1) Executing in merged

mode whenever possible, as it produces the fastest response

and without extra overhead. (2) When starvation occurs,

switch to mixture first, then unmerge mode, in order of

the switching cost and extra computation. Alg.1 shows the

pseudo-code. To alleviate starvation, it assigns each request

a credit, indicating its waiting time adds the execution time

in current mode and the mode switch latency (line #2), and

sets a tolerance threshold 𝜃 as the mixture mode condition.

When the request workload meets the criteria for switching

to merge mode, the algorithm switches the mode to merge

(line #5-8). When the number of starving requests exceeds 𝜃 ,

Alg.1 processes them with mixture mode immediately (line

#9-12). When it further exceeds half the maximum batch size,

it switches to unmerge mode (line #13-15).

One may think that a static inference mode by one-shot

search can work well without switching. However, it is

hardly that in practice. Most applications experience dy-

namic workloads, making it difficult to define an optimal

execution mode or order. For example, the video analytics ap-

plication serves multiple users. The workload changes when

new registered tasks (specified stream, tasks/adapter, accu-

racy) arrive for video analytics application, and the workload

of LoRA adapters changes along with the multi-round VQA

for visual retrieval application. Detailed results can be found

in §6.3.

5 Implementation
We implement VaLoRA upon several tools, including Py-

torch (v2.0.1) [6], Triton (v2.0.1) [75], CUTLASS (v3.5.1)[15],

and vLLM (v0.3.0) [51], with ∼7.1K LOC. Most of the code is

implemented in Python (v3.9) except the ATMM in CUDA.

We use vLLM, especially the LightLLM [1] version, to build

VaLoRA because of its advanced features, such as PagedAt-

tention, iteration-level scheduling, and token-based memory

management. The three key techniques in VaLoRA are im-

plemented as follows. (1) We implement the accuracy-aware

LoRA adapter generation for popular LLMs, including Qwen-

VL [20] and LLaVA [59] series, based on transformers [81]

and PEFT [61] library. (2) We implement ATMM using CUDA

C++ based on CUTLASS. Its hash table, which stores optimal

input-tiling pairs, is implemented with a 128-bit unsigned

integer as a key to map the input shapes. Since CUTLASS

operators cannot be dynamically compiled, we created a

Python interface to bind and package the code implementa-

tion of optimal tiling configurations with Pybind11 [41] and

setuptools [5]. (3) We integrate ATMM into vLLM to support

unmerged inference, mixture inference, and swift inference

mode switch. To manage the complicated adapters and re-

quests in unmerged and mixture mode, we transform the

LoRA type of each request into a one-hot vector and build a

request-type mapping matrix of the current batch. For effi-

cient memorymanagement, we use the unified memoryman-

agement [69] for KV cache and adapters. VaLoRA streams

text and images in requests asynchronously via RPyC [4]. Af-

ter receiving a request, VaLoRA identifies its LoRA adapter,

dispatches it to the adapter, then generates a response and

returns it.

LoRA adapter swap. Considering it may generate an

amount of LoRA adapters, we leverage the main memory.

To reduce delay, we only store 𝐴 and 𝐵, not Δ𝑊 , and swap

them asynchronously between the GPU and host memory,

and compute Δ𝑊 with ATMM at runtime.

Prefix caching. The same images may be accessed multi-

ple times in some applications, e.g., the multi-round visual

question-answering [38]. We implement a prefix caching,

based on CacheBlend [87] and SGLang [98], to reuse the

same images’ KV cache, avoiding redundant storage.
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6 Evaluation
We evaluate VaLoRA with two vision applications involving

five tasks on three LMMs. The key takeaways are:

• VaLoRA decreases 20-89% end-to-end latency compared

to state-of-the-art serving systems and achieves comparable

accuracy with small models on specific domains. (§6.2)

• Accuracy-aware LoRA Adapter Generation brings re-

markable accuracy and throughput benefits; Adaptive-tiling

LoRA Adapters Batching and Flexible LoRA Adapters Or-

chestration boost great latency and throughput. (§6.3)

• VaLoRA shows strong stability to diverse workloads and

LoRA adapter numbers, as well as scalability to multiple

GPU resources. (§6.4)

6.1 Experimental Setup
Vision applications and datasets.We select two distinct

types of visual applications: visual retrieval and video analyt-

ics, to evaluate the performance of VaLoRA. Visual retrieval

aims to analyze images and respond to queries. It involves vi-

sual question-answering, image caption, and specific-target

detection tasks when needed by queries. We evaluate vi-

sual retrieval on SharedGPT-4V [26] and RefCOCO [48, 90]

datasets. Video analytics ingests and analyzes each RGB

frame from the video, then outputs results of fixed vision

tasks, including object detection and video understanding

like prior work [79, 92]. Object detection locates and identi-

fies objects on each video frame on YODA [84] andCityscapes

[29]. Video understanding recognizes actions on consecutive

video frames on UCF101 [73].

Testbed and workload. We evaluated VaLoRA on a server

equipped with one NVIDIA A100 80GB GPU and Intel Xeon

Platinum 8358 CPU, with 128 GB of host memory. The work-

load of visual retrieval is from production traces from the

Microsoft Azure LLM inference trace 2023 [14]. As the high

volume of requests in this workload trace exceeds current

hardware capabilities, like prior work [82], we randomly

sample requests at varying rates in a round-robin approach.

Like prior work [31, 79], the video analytics workload ingests

one video chunk per second, 30 frames each, each stream.

Our scope is primarily focused on optimizing single-GPU,

single-instance LMM services. If not specifically mentioned,

the experiments are conducted on one instance of an A100

as reported above.

Metrics. Accuracy metrics follow the standard metrics. Vi-

sual retrieval is measured by vqa-score [37], object detection

is evaluated by average F1-score and video understanding

is evaluated via Top-1 accuracy. To the system metrics, we

evaluate the end-to-end throughput, i.e., requests per second,
and the average token latency, i.e., the sum of each request’s

end-to-end latency divided by the total number of tokens.

Models.We choose the widely-used open-sourced LMMs,

Qwen-VL [20] and LLaVA-1.5 series [59]. We use various

LLaVA models with different sizes, including LLaVA-v1.5-7B

Model Vision Encoder Size Layer # Dimension

Qwen-VL-7B Openclip-ViT (1.9B) 18GB 32 4096

LLaVA1.5-7B CLIP-ViT (0.3B) 13GB 32 4096

LLaVA-1.5-13B CLIP-ViT (0.3B) 24GB 40 5120

Table 2. Model configurations.

and LLaVA-v1.5-13B. The details of these models are shown

in Table 2. The rank of LoRA adapters is set to 64. We also

use five small models, VisionMamba [102], YOLO [33], OS-

CAR [55] VideoMAE [76], and UNINEXT [86] that yield

state-of-the-art performance for accuracy comparison on

corresponding datasets.

Baselines. To show the superiority brought by VaLoRA, we

compare it with three different baselines:

• S-LoRA [69] only serves in unmerge mode and employs

its customized CUDA operator to batch concurrent hetero-

geneous LoRA computation.

• Punica [25] also serves in unmerge mode only, like S-

LoRA, but employs its own operator.

• dLoRA [82] dynamically switches between unmerged and

merged mode based on workload and invokes PyTorch oper-

ator Einsum to implement unmerged inference.

6.2 End-to-End Performance
This section reports the E2E performance of VaLoRA on

multiple LMMs and applications.

Systemperformance.VaLoRA achieves notably lower aver-

age token latency than dLoRA, Punica, and SLoRA regardless

of vision applications and LMMs. The first row in Fig. 14

shows their performance for visual retrieval on three LMMs.

Across three LMMs, VaLoRA reduces 72%, 50%, and 20% aver-

age token latency, compared to dLoRA, Punica, and S-LoRA,

respectively. To Punica and S-LoRA, this acceleration is ob-

vious. They only work in unmerge mode, which ignores the

merge-friendly workload pattern, e.g., 60% of requests asking

for the same LoRA adapter. dLoRA, though, takes the pref-

erence of both inference modes into account, its high mode

switching cost and inefficient Einsum operator in unmerged

inference incurs this 20% drop; conversely, VaLoRA’s ATMM

operator enables swift switch and efficient unmerge and mix-

ture mode (more experiments in §6.3). Moreover, along with

the increasing requests per second, the inflection points of

most serving systems occur at 6, which can be eliminated if

equipped with more GPUs (more in §6.4).

VaLoRA delivers the best service on video analytics than

other systems, as shown in the second row of Fig. 14. It

makes 89%, 83%, and 71% of average token latency reduction

than dLoRA, Punica, and S-LoRA, respectively. This benefit

arises from the vision task head. It effectively eliminates

the multi-rounds inference in the autoregressive manner of

LLMs (more experiments in §6.3.1).

Compare each column in Fig. 14. VaLoRA produces more

remarkable benefits than other serving systems on the video
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Figure 14. Average token latency comparison over various serving systems on two vision applications and three LMMs.

Figure 15. Accuracy comparison between small models and
LMM model across five different vision tasks.
analytics application. This difference stems from the different

distribution of input and output token lengths in two vision

applications. Unlike visual retrieval, video analytics typically

has fewer output tokens and more input tokens, e.g., each
video understanding request has 6×256 input and 5-10 output
tokens, while VQA has 256 and 200+. Since input tokens

can be batched computation in the prefill stage, they cost

much less time (<1ms per token) than decode-stage output

tokens (30-50ms per token). Furthermore, the extra latency

of unmerged inference increases along with longer input

length (See Fig. 17); thus, longer-input video analytics can

obtain more benefits from VaLoRA with mode switch.

Accuracy performance. VaLoRA achieves performance

close to or surpassing the SOTA accuracy of domain-specific

small models across various tasks. We report the results of

Qwen-VL with fine-tuned LoRA adapters for different vision

tasks as shown in Fig. 15. We conduct training on A100 80GB

for five distinct tasks and test against corresponding SOTA

small models. For instance, VaLoRA achieves a 4.3-5% accu-

racy improvement in Visual QA and image captioning tasks.

Additionally, for tasks where small models typically excel,

such as object detection and video understanding, VaLoRA’s

fine-tuned LoRA adapters improve Qwen-VL 24.5-62.2% ac-

curacy, achieving competitive accuracy in these domains.

6.3 Comprehensive Component-wise Analysis
We provide an in-depth performance analysis of individual

system components. If not mentioned, all results are tested

on the Qwen-VL model with 10 requests per second.

6.3.1 Accuracy-aware LoRAAdapterGeneration helps

VaLoRA achieve great throughput improvement while keep-

ing high accuracy. The accuracy gain has been discussed

above; we only analyze the throughput gain from the vision

task head. Especially for video analytics tasks, the vision task

head employed by VaLoRA significantly reduces the rounds

of autoregressive decodes, thereby greatly enhancing system

performance. As illustrated in Fig. 16, VaLoRA achieves a 41-

63% reduction in latency compared to the original language

modeling head. This gain is attributed to the video analytics

head’s contribution to minimizing the prompt length and

requiring only one inference round. In video understanding

tasks, VaLoRA equipped with the video analytics head can

match the accuracy of certain small models and handle 3-4

video streams in real time.

6.3.2 Adaptive-tiling LoRA Adapters Batching gives

the most efficient and stable matrix multiplication by ATMM

among all comparisons. As shown in Fig. 17, by testing over

100 rounds after 10 warm-ups on large amounts of diverse

inputs, ATMM achieves the lowest average latency across dif-

ferent batch sizes, speeds up 2.7×, 2.3×, and 3.4× of S-LoRA,

Punica, and dLoRA, respectively. On stability, the statistical

results plotted in Fig. 18 show that ATMM delivers the most

robust performance, which reduce the latency fluctuation

by 3×, 2×, and 2× compared to S-LoRA, Punica, and dLoRA.

These benefits stem from the profile-based optimal tiling

search at the offline phase. When the batch size exceeds 1024,

for instance, ATMM adaptively adjusts to a larger tile shape,

fully utilizing hardware resources, while other operators

suffer from static tiling.
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Figure 16. Latency compar-
ison between original LMM
head and video analytics head.

Figure 17. Latency compari-
son of different operators across
different token batch sizes.

Figure 18. Performance of dif-
ferent operators at average, 90-
tile, and 95-tile .

Figure 19. Performance of dif-
ferent schedulers under differ-
ent skewness.

Figure 20. Latency gain of
mixture mode.

Time(s)

Ada.1 Ada.2

Ada.1 Ada.2

0.4 0.8

Ada.1&2 Ada.1&2

Switch only cost 5+5ms

cost 150+ms

Ours

dLoRA

UnMer.

Figure 21. Benefits from swift
mode switch.

Figure 22. Impact of the re-
quest skewness.

Figure 23. Impact of the
adapter number.

At the decode stagewith small inputmatrix shapes, the left

part in Fig. 17, ATMM maintains high efficiency by adapt-

ing smaller tile shapes. It delivers comparable latency to

S-LoRA, outperforming dLoRA and Punica by 4.5× and 2.6×.
dLoRA suffers from the large context-switching overhead

of repeated kernel calls by Einsum, while Punica results in a

low core utilization due to its mismatched tile shapes. Bene-

fiting from the adaptive tiling, ATMM spends only 5ms to

compute and un-/merge all-layer LoRA matrices.

6.3.3 Flexible LoRA Adapters Orchestration dynam-

ically selects and switches inference modes with our swift

switcher and deLoRA operation offering the best service

among comparisons. As shown in Fig. 19, VaLoRA outper-

forms merge only, unmerge only, and dLoRA by 33%, 59%,

and 21% of latency under different skewness, respectively.

The skewness indicates the proportion of the most required

LoRA adapter. Merge only processes requests invoking the

same LoRA adapter, leading to underutilized resources and

small batch sizes, while unmerge only introduces significant

extra computation. dLoRA shows benefits only in highly

skewed workloads as the poor performance of its unmerged

inference operator Einsum. Our scheduling policy performs

the best because it fully utilizes low-latency merge mode,

and invents mixture mode to eliminate some mode switch.

deLora significantly reduces the latency compared to un-

merged inference as plotted in Fig. 20. Its early execution for

the starved requests saves an average of 62% computation

overhead when the starved requests’ number is lower than

50% of max batch size. On the other hand, the swift inference

mode switcher contributes a lot, too. Supported by ATMM,

it yields 1.2× and 1.4× speed up compared to dLoRA and

unmerge in Fig. 21 case that infers with two LoRA adapters.

6.4 Stability and Scalability
VaLoRA demonstrates great stability and scalability.

Impacts of different skewness of requests.VaLoRA achieves

the best average token latency compared to other systems

under diverse skewness. Fig. 22 shows that VaLoRA achieves

a reduction in average token latency by 76-81%, 72-83%, and

63-76% compared to dLoRA, Punica, and S-LoRA under four

different skewness conditions. This superiority arises from

the VaLoRA’s timely mode switch and proper requests and

adapters orchestration. With the swift switcher and mixture

mode, it responds to workload changes fast.

Impacts of different number of LoRA adapters. VaLoRA
maintains the best and most stable performance when the

number of LoRA adapters increases. As shown in Fig. 23, it

suffers the minimal impact, which benefits from VaLoRA’s

efficient memory management. VaLoRA’s pre-allocated con-

tiguousmemory reduces unnecessarymemory copy ormove-

ment and memory fragmentation. In addition, when the

number increases to need LoRA to swap, VaLoRA’s strat-

egy swaps adapter and computes matrix at runtime, and the

asynchronous swap contributes to the low latency. With the

highly optimized ATMM kernel, the LoRA matrix swapping

keeps high stability compared to the matrix multiplication

via batched GEMM in dLoRA.

Scales to multiple GPUs. VaLoRA demonstrates excellent

scalability and can significantly enhance the overall sys-

tem throughput by multiple GPUs. As shown in Tab. 3, on

servers equipped with 1, 2, and 4 A100 GPUs, the total sys-

tem throughput can reach 6.07, 11.48, and 23.97 requests per

second, respectively. In future work, we can further improve
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GPU Num. TPT (req/s)

1 6.07

2 11.48

4 23.97

Table 3. Scales to multiple
GPUs.

Figure 24. Perf. breakdown
of prefix caching.

system performance in multi-GPU scenarios by incorporat-

ing inter-GPU scheduling like dLoRA [82] and support larger

LMM like InternVL2-76B [35].

Impacts of prefix caching. VaLoRA maintains stable per-

formance when removing prefix caching. As shown in Fig. 24,

VaLoRA loses less than 4% of throughput after removing

prefix caching. In VaLoRA, prefix caching is only a minor

implementation supporting efficient multi-round VQA in

visual retrieval applications.

7 Disscussion and Limitations
Limited flexibility of vision task head. The vision task

head is deployed for one specific task and thus limits the flex-

ibility. For this reason, VaLoRA keeps the language modeling

head for visual retrieval applications. Even though, the vi-

sion task head, as a part of LoRA, facilitates efficient runtime

by batching execution with ATMM. We leave improving the

flexibility to future work.

Knowledge fusion order. The knowledge fusion order af-

fects the final LoRA model quality, as illustrated in Fig. 5.

Seeking the best order of training data is also an important

but unsolved problem in the machine learning community,

e.g., curriculum learning and catastrophic forgetting prob-

lems in LLMs. In the future, we will borrow the idea from

the ML community for knowledge fusion.

Knowledge pre-clustering. Cluster knowledge before fine-
tuning LoRA adapters can also affect the final quality. VaL-

oRA clusters the data of the same vision task and keeps one

LoRA adapter to serve one type of task. We leave combining

VaLoRA with other data clustering methods to future work.

8 Related Works
Large model serving systems recently leveraged system

optimization techniques to improve LLM’s inference effi-

ciency. With paged thinking, vLLM [50] proposes a Page-

dAttention operator cooperating with its block-based KV

cache to minimize GPU memory fragmentation. From ad-

vanced batching mechanisms, Orca [89] introduces iteration-

level scheduling to continuously batch requests of vary-

ing lengths, and DeepSpeed-FastGen [39] further improves

it with a dynamic split-fuse strategy. With a distributed

architecture, FlexGen [70] employs offloading to enhance

LLM serving throughput, while Mooncack [64] features a

KVCache-centric architecture separating the prefill and de-

coding clusters. With LLM inference characteristics, SpecIn-

fer [62] utilizes speculative decoding to reduce latency, while

SARATHI [18] schedules requests by piggybacking decodes

and chunked prefills.

S-LoRA [69], Punica [25], dLoRA [82] are the only three

systems that also serve multiple LoRA LLMs by batching

requests destined for different adapters. Their shortcomings

are deeply analyzed in this paper. An earlier study, PetS [99],

also considers the scenario of serving multiple parameter-

efficient DNN models, but it does not consider serving au-

toregressive LLMs and the unique system characteristics

of LoRA adapters. Compared to them, VaLoRA provides a

more efficient serving runtime and, as an end-to-end system,

includes LoRA adapter generation.

Parameter-efficient fine-tuning (PEFT) [40, 54] is devel-
oped to adapt large pre-trained models to specific tasks or do-

mains. By adjusting a few layers or parameters, PEFT retains

core pre-trained knowledge while efficiently learning task-

specific nuances [58]. As a verification system, VaLoRA’s

LoRA adapter generation adopts a heuristic algorithm. It can

be easily replaced by many advanced PEFT techniques [96],

and we leave this in future work.

Retrieval-augmented Generation (RAG) [22, 44, 52] en-
hances LLMs by incorporating relevant knowledge from

external databases, enabling comparable performance to

fine-tuned LLMs [24]. Some work [66, 78] suggest itera-

tive retrieval throughout generation for higher quality. VaL-

oRA’s system performance greatly outperforms RAG because

RAG’s costly vector search [27] and long-context prompt.

9 Conclusion
In this paper, we first explore the utilization of LMMs as foun-

dation models for vision applications to achieve high serving

efficiency and user-friendly nature language interface. To

achieve this, we propose VaLoRA, an end-to-end system that

adapts LMMs for domain-specific visual tasks with LoRA

adapters and efficiently manages them at runtime to enrich

vision applications. Across two typical vision applications,

we show that VaLoRA enables the effective utilization of a

single LMM to achieve superior performance and general-

ization in multiple visual tasks. While VaLoRA by no means

is the final answer, we hope it serves as a stepping stone

towards poly-basic design for future vision applications and

demonstrates the potential of adapting LMM for visual tasks.
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A Profile-based Optimal Tiling Search
Algorithm

Algorithm 2 Tiling Search(model, hardware)

Input: model, hardware

Output: Optimal configuration for each input shape

1: function TilingSearch(model, hardware)

2: min, max=GetRange(model, hardware) ⊲ Limit the input size

by limited memory

3: configlist=GetConfig(harware) ⊲ Limit the tiling step s.t. the

arch characteristics

4:

5: for shape in range(min, max, 32) do ⊲ Reduce the search step

size based on the vision

task characteristics

6: for rank in ranklist do
7: for tbtile in configlist[0] do
8: for warptile in configlist[1] do
9: Profile(shape, tbtile, warptile)

10: UpdateBestConfig( )

B Prompt Template of Vision Applications
We report the prompt template for two vision applications,

visual retrieval and video analytics, as shown in Fig. 25. Vi-

sual retrieval includes three tasks: referring expression task,

visual question answering, and image captioning. The black

text represents the prompt, and the blue text shows the re-

sponse. Video analytics involves two tasks: object detection

and video understanding. Object detection uses a similar

prompt as the referring expression task. Video understand-

ing provides multiple image frames as input, followed by an

instruction to analyze the actions depicted in the sequence.

Visual Retrieval Prompt

<img> Image Path or URL </img>
Task type:["Referring Expression Task","Visual Question Answering","Image Captioning"]
Answer:...<EOS>

Video Analytics Prompt
<img>Image Path or URL </img>
Task type: ["Object Detection","Video Understanding"]
Answer:...<EOS>

Referring Expression Task Visual Question Answering Image Captioning
<img> demo.jpg </img>, 
Circle the handshake position 
on the picture.

Answer:<ref>handshake</ref
><box>(536,509),(588,602)</
box><EOS>

<img> 133279.jpg </img>, 
How many cars are there in 
the image?

Answer:There are three cars 
shown in the image.<EOS>

<img> 01581435.jpg </img>, 
Generate the caption in 
English:

Answer: the beautiful flowers 
for design.<EOS>

Object Detection

<img> 54b4e42b-3667-4564-b8fa-c23122ca54d5_1472_448.jpg </img>, Please box all the objects 
in the picture that you think are airplane.

Answer:<ref>airplane</ref><box>(767,0),(910,83)</box><box>(601,0),(748,76)</box> 
<box>(455,0),(587,64)</box><EOS>

Video Understanding

<img> frame1.jpg </img><img> frame2.jpg </img><img> frame3.jpg </img>
<img> frame4.jpg </img><img> frame5.jpg </img><img> frame6.jpg </img> 
Please analyze the consecutive frames sequence and identify the actions occurring in the video.

Answer:Boxing Punching Bag<EOS>

Figure 25. The prompt template of vision applications.
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