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ABSTRACT

Program slicing has been widely applied in a variety of software en-
gineering tasks. However, existing program slicing techniques only
deal with traditional programs that are constructed with instruc-
tions and variables, rather than neural networks that are composed
of-neurons-andssynapses: In this paper, we propose NNSlicer, the
first approach for slicing deep neural networks based on data flow
analysis. Our method understands the reaction of each neuron to
an input based on the difference between its behavior activated by
the input and the average behavior over the whole dataset. Then
we quantify the neuron contributions to the slicing criterion by
recursively backtracking from the output neurons, and ealculatesthe
slice as the neurons and the synapses with larger contributions. We
demonstrate the usefulness and effectiveness of NNSlicer with three
applications, including adversarial input detection, model pruning,
and selective model protection. In all applications, NNSlicer signif-
icantly outperforms other baselines that do not rely on data flow
analysis.

CCS CONCEPTS

« Computing methodologies — Neural networks; - Software
and its engineering — Dynamic analysis.
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1 INTRODUCTION

Program slicing [74] is widely used in software engineering for
various tasks such as debugging [1], testing [3], and verification
[14]. It aims to compute a set of statements (named program slice)
that may affect the values at some points of interest (named slicing
criterion). For example, by setting the slicing criterion to a specific
output that generates an error, one can get a program slice that may
be relevant to the error but much smaller in size than the whole
program, thus much easier to analyze.

Existing program slicing techniques are mainly designed for tra-
ditional programs that are constructed with human-defined func-
tions and instructions. Deep Neural Networks (DNNs), which have
achieved remarkable success in many data-processing applications
in recent years, can also be viewed as a special type of programs
constructed with artificial neurons (a neuron is a mathematical
function that receives one or more inputs and computes an output,
such as the weighted sum or the maximum.) and synapses (the
connections between neurons). However, the weights of synapses
are learned by the machine and are usually hard for a human to
understand. To the best of our knowledge, it has not been studied
on whether and how a DNN can be analyzed meaningfully using
program slicing techniques.

We apply the concept of program slicing to the area of DNNs and
define DNN slicing as computing a subset of neurons and synapses
that may significantly affect the values of certain interested neurons.
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Slicing a DNN is interesting for a number of reasons. First, it is a
widely-concerned problem that the decisions made by DNNs are
difficult to explain or debug. Program slicing, hopefully, can be
used to extract the operations that lead to a decision, making it
easier to interpret. Second, the size of DNN is growing rapidly in
recent years, with more than 25 million parameters (180 MB in size)
in a state-of-the-art computer vision model [65] and 110 million
parameters (340 MB in size) in a state-of-the-art natural language
understanding model [18]. How to improve the model efficiency
has become an important research problem. To this end, we believe
program slicing has the potential to help reduce the model size sig-
nificantly. Last but not least, partitioning the model into important
slices and less-important slices can also benefit model protection,
as one can prioritize the important slices if protecting the whole
model is difficult or impossible.

DNN slicing introduces several new challenges as compared
with traditional program slicing. First, unlike the instructions and
variables in traditional programs that are themselves meaningful,
a neuron in a DNN is usually a meaningless mathematical oper-
ator, whose behavior is determined by its learned weights and
connections with other neurons. Thus, it is a challenging problem
to understand the behavior of each neuron based on its connections
and weights. Second, each output value of a DNN is affected by
almost all neurons in the model. To generate a meaningful and
concise slice, we must differentiate and characterize the neurons
based on their contributions to the slicing criterion. Finally, the
data flow graphs in traditional programs are usually sparse and
small-scale, while the data flow graphs of a DNN may contain mil-
lions of neurons densely connected with each other. Analyzing a
graph in such a large scale poses a much higher requirement on
system efficiency.

In this paper, we present NNSlicer, a dynamic slicing technique
for DNNs based on data flow analysis on neural networks. The
slicing criterion is defined as a set of neurons with special meanings
(such as the neurons in the last layer of an image-classification
model whose outputs represent the probabilities of categories),
while a neural network slice is defined as a subset of neurons in the
neural network that exhibit larger effects to the slicing criterion.
NNSlicer focuses on dynamic slicing in which a slice is correspond-
ing to a set of input samples, rather than static slicing, which is
input-independent.

NNSlicer consists of three phases: a profiling phase, a forward
analysis phase, and a backward analysis phase. The profiling phase
aims to model the average behavior of each neuron. The behavior
of a neuron can be characterized by its activation values, which
changes by feeding different data samples into the model. We feed
all training data into the model and compute the average activation
value of each neuron . These average values are used as the baseline
to understand the reaction of each neuron to specific data samples.

The forward analysis feeds the interested data samples (the sam-
ples we want to compute slice with) into the model and records
the activation value of each neuron. The difference between the
recorded value and the average activation value computed in the
profiling phase represents the neuron reaction to the data samples.
The magnitude of the value difference indicates the sensitivity of
the neuron with regard to the data samples.

Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

However, the neurons with higher sensitivity are not necessar-
ily more important for the slicing criterion, since the effect of the
neuron may be eliminated or redirected to other outputs by its
subsequent neurons. Thus, we further perform a backward analysis
that backtracks the data flow from the output neurons to understand
the contribution of each neuron. Specifically, the slice is initialized
with the output neurons specified in the slicing criterion. We then
iteratively analyze each neuron in the slice by calculating the con-
tributions of its preceding neurons. The preceding neurons with
higher contributions are added into the slice for further backward
analysis.

We implement NNSlicer in TensorFlow through instrumenta-
tion and support the common operators in convolutional neural
networks (CNNs). Our implementation is able to deal with large
state-of-the-art CNN models, such as ResNet [34]. The time spent
by NNSlicer to compute a slice for a data sample is around 40 sec-
onds on ResNet10 and 550 seconds on ResNet18. Computing slices
for batch input is much faster (about 3s and 40s per sample on
ResNet10 and ResNet18).

To demonstrate the usefulness and effectiveness of NNSlicer, we
further build three applications for adversarial defense, model prun-
ing and model protection, respectively. First, we show that NNSlicer
can be used to effectively detect adversarial samples. Specifically,
we show that the slice computed for a data sample reflects how
the prediction decision is made by the model, and the slices com-
puted from adversarial samples significantly differ from the slices
computed from normal samples. On average, the adversarial input
detector implemented based on NNSlicer achieves a high precision
of 0.83 and a perfect recall of 1.0. Second, we show that NNSlicer
can be used to customize DNN models for a certain label space.
Given a subset of model outputs, NNSlicer computes a slice for
the outputs and generates a smaller model that is composed of the
neurons and synapses in the slice. We show that the sliced model
significantly outperforms other model-pruning methods. Notably,
the sliced model can achieve high accuracy (above 80%) even with-
out fine-tuning. Finally, NNSlicer can also be used to improve model
protection. Specifically, we can selectively protect the important
slices rather than the whole model, in order to reduce the protec-
tion overhead. We show that by hiding 50% parameters selected
by NNSlicer, the exposed part can be nearly immune to model
extraction attacks [53].

This paper makes the following contributions:

(1) To the best of our knowledge, this is the first paper to system-
atically explore and study the idea of dynamic DNN slicing.

(2) We implement a tool, NNSlicer, for dynamic DNN slicing on
the popular deep learning framework TensorFlow. Our tool
is scalable and efficient.

(3) We develop three interesting applications using DNN-slicing
techniques and demonstrate the effectiveness of NNSlicer.

2 BACKGROUND AND RELATED WORK

2.1 Deep Neural Networks

Deep neural networks (DNNs) are inspired by the biological neural
networks that constitute animal brains. A neural network is based
on a collection of connected mathematical operation units called
artificial neurons. Each connection (synapse) between neurons can
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transmit a signal from one neuron to another. The receiving neu-
ron can process the signal(s) and then signal downstream neurons
connected to it. Typically, neurons are organized in layers. Differ-
ent layers may perform different kinds of transformations on their
inputs. For a certain kind of neuron, how it processes the signal
is determined by its weights, which are learned by considering
examples. For example, in image recognition, the neural network
learns from example images that have been manually labeled as
"cat" or "no cat" and uses the learned knowledge to identify cats
in other images. Neural networks are good at capturing complex
mapping relations between inputs and outputs that are difficult
to express with a traditional rule-based program. Today, DNNs
have been used on a variety of tasks, including computer vision
[13], natural language processing [25], recommendation systems
[20], and various software engineering tasks [30, 45], where they
have produced results comparable to and in some cases superior to
human experts.

A simple neural network is shown in Figure 1 (a). The neural
network contains 9 neurons (2 input neurons, 2 output neurons
and 5 intermediate neurons organized in 2 hidden layers) and 16
synapses. The first hidden layer contains 3 neurons that receive sig-
nals from the input neurons and send signals to the second hidden
layer, which contains 2 neurons that further process the signals and
forward to the output neurons. In this example, each neuron (ex-
cept the input neurons) performs a weighted sum operation, which
multiplies each received signal with a learned weight (marked on
the synapses) and computes the sum as the neuron’s value. Such
weighted sum operations are common in today’s neural networks,
while usually accompanied by other operations such as rectifier,
maximum, etc. The example neural network is for illustration pur-
pose only and does not produce meaningful output. Real-world deep
neural networks typically have millions of neurons and synapses
[18, 34, 63].

2.2 Program Slicing

Program slicing is a fundamental technique to support various soft-
ware engineering tasks in traditional programs, such as debugging,
testing, optimization, and protection. It was originally introduced
by Mark Weiser in 1981 [74] for imperative, procedureless programs.
It aims to compute a program slice S that consists of all statements
in program P that may affect the value of variable v in a statement
x. The slice is defined for a slicing criterion C = (x, v) where x is
a statement in program P and v is variable in x. The slicing crite-
rion represents an analysis demand relevant to an application, e.g. ,
in debugging, the criterion could be the instruction that causes a
crash.

At first, only static program slicing was discussed, which ana-
lyzes the source code to find the statements that can affect the value
of variable v at statement x for any possible input. Korel and Laski
[42] introduced the idea of dynamic program slicing, which tries to
find the statements that actually affect the value of a variable v for a
particular execution of the program rather than all statements that
may have affected v for any arbitrary execution of the program.

Program slicing techniques have been seeing a rapid develop-
ment since its original definition. Various approaches are proposed
to improve the slicing algorithms [36, 81], introduce other forms of
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slicing [10, 33] and extending slicing ability to more programming
languages and platforms [4, 5, 14, 69]. Meanwhile, many applica-
tions of program slicing techniques are proposed. Today, program
slicing is widely used in various software engineering tasks includ-
ing debugging [1], testing [3], software verification [14], software
maintenance [23], and privacy analysis [44]. There are many com-
prehensive surveys [6, 62, 67] that summarize the advances in this
area.

In this paper, we try to implement program slicing for deep
neural networks, a completely different type of program that con-
sists of mathematical operations with learned weights, rather than
developer-written statements or variables.

2.3 Program Analysis for Neural Networks

Prior to ours, researchers had already attempted to analyze neural
networks by applying or borrowing ideas from traditional program
analysis techniques.

One of the most widely discussed applications of neural network
analysis is to test the robustness of neural networks against ad-
versarial attacks [43, 64, 78], which add small perturbation to the
input to fool the DNN models. DeepXplore [56] proposed to use
neuron coverage (the number of activated neurons) to measure the
parts of a deep learning system exercised by a set of test inputs, and
higher coverage usually means higher robustness. Since then, sev-
eral new coverage metrics were introduced and various approaches
were proposed to generate test inputs that maximize the coverage
[19, 66, 75]. Training the model with the generated test inputs can
improve its robustness and accuracy.

In addition to testing, many studies have attempted to detect
adversarial inputs based on the internal behavior of neural networks.
For example, Gopinath et al. [28] and Ma et al. [47] attempted to
extract properties or invariants from the neuron activation state
and use them to detect adversarial inputs. Wang et al. [70] borrowed
the idea of mutation testing and found that adversarial samples
are usually more sensitive to model mutations. Qiu et al. [57] and
Wang et al. [73] extracted a path from the neural network that is the
most critical for a sample, which can be used to distinguish normal
and adversarial samples. The slice computed in our approach can
also be viewed as the decision logic of the neural network and used
to identify adversarial samples (discussed in Section 6.1).

As neural networks are inherently vulnerable and imprecise,
researchers had also tried to provide a formal guarantee of secu-
rity and correctness with the help of program analysis techniques,
such as constraint solving [40], interval analysis [71, 72], symbolic
execution [29], and abstract interpretation [24]. While promising,
these techniques usually suffer from poor scalability - most of them
cannot be applied to today’s large neural networks.

There are also some existing work incorporating the idea of
“slicing” to neural networks. Shen et al. [61] proposed slicing CNN
feature maps to understand the appearance and dynamic features
in the videos. Cai et al. [9] proposed to slice a DNN into different
groups that can be assembled elastically to support dynamic work-
load. However, these approaches are not related to program slicing
that aims to understand the internal logic of a program. Instead,
they focused on training or assembling different parts of a DNN.
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Qiu et al. ’s work [57] is the closest to ours. Given an image
classification model, they compute an effective path for each class,
which contains the neurons and synapses that positively affect the
prediction result. However, with regard to the slicing criterion, their
effective paths may be incomplete (i.e. , missing important neurons
and synapses such as the ones with negative contributions) and
imprecise (i.e. , including less important neurons and synapses such
as the ones yielding a large value for any input). Such shortcomings
make their method less useful on applications other than adversarial
defense (details in Section 6).

3 MOTIVATION AND GOAL
3.1 Motivation

Similar to traditional programs, we argue that slicing a DNN is also
meaningful and useful for many important software engineering
tasks, as illustrated below.

First, a DNN is a black box whose decisions are hard to interpret
[80]. As a result, it is usually hard or even impossible for develop-
ers to understand when and why a DNN makes mistakes. As in
traditional programs, the input would take a different control flow
or data flow if it leads to failures. It would be potentially beneficial
if there is a technique to automatically analyze the decision logic
in DNNS.

Second, the size of state-of-the-art DNNs and their required com-
puting power have been growing rapidly in recent years, thus it is
highly desirable to reduce the size of DNNs to improve efficiency
without sacrificing too much accuracy. Model pruning (removing
some neurons and synapses) is one of the most widely-used tech-
niques [32]. However, how to prune the model (i.e. which neurons
and synapses to remove) is a key question, as we do not want to
remove the critical structures that may lead to severe performance
degradation. Deciding which neurons and synapses to prune is
quite similar to computing a program slice.

Third, model protection, i.e. preventing the model from getting
stolen, is on increasing demand as models are traded and shared
across different organizations. Various techniques such as homo-
morphic encryption [12] and hardware enclave [68] can be used to
protect models, but protection often brings performance degrada-
tion. A practical solution is to protect a part of the model instead
of the whole model [68]. Thus, partitioning the neural network
to important and unimportant slices may be beneficial as we can
assign limited protection resources to more important slices.

The similarity between these tasks is the demand to find a subset
of neurons and synapses that are more important in the decision-
making process, which is the goal of this paper.

3.2 Problem Formulation

This section defines the concepts and symbols that will be used in
this paper and formulates the goal of DNN slicing.

We first formulate the definition of neuron and synapse, two key
concepts used throughout this paper. A neuron n in a neural net-
work is a mathematical operator that takes one or more numerical
inputs and yields one numerical output. n is said to be activated
if its mathematical operation is executed, and the operation re-
sult y is called the activation value. A neuron n has one or more
synapses si, $2, ..., Sk, weighted with wq, wo, ..., wg, respectively.

Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu

Table 1: Definition of symbols commonly used in this paper.

Symbol Meaning
M=(N,S) Model M with neuron set N and synapse set S
n,y Neuron n and its activation value y
S, X, W Synapse s, its input value x and weight w
I,¢ Input dataset I and an input sample & € T
0,0 Output neuron set O and an output neuron o € O
C, MC Slicing criterion C and its corresponding slice
CONTRIB Curr.lulative cont.ribu.tion ofa neuron or a synapse
i.e. the contribution to the slicing criterion
contrib Local contribution of a neuron or a synapse
i.e. the contribution generated in an operation
0 Hyperparameter to control the slice quality

Each synapse s; scales the activation value of another preceding
neuron x; with w; and passes the scaled value to the neuron n as
input. Similarly, the activation value of neuron n is also passed to
other succeeding neurons by other synapses. The very last neurons
that do not have succeeding neurons are the output neurons, whose
activation values are the output of the neural network model.

Any modern DNN architecture can be viewed as a combination
of such neurons and synapses. For example, a fully connected layer
that maps 20 inputs to 10 outputs can be seen as a combination
of 10 neurons, each of which computes the sum of values from 20
weighted synapses. A 16 X 3 X 3 X 32 filter in a convolutional layer
can be viewed as 32 neurons, each of which computes the sum
over 144 weighed synapses. A Rectified Linear Unit (ReLU) can be
viewed as a neuron with only one synapse. Note that a neuron may
be activated several times with different input values during the
inference pass of a sample, such as the neurons in convolutional
layers.

Based on the concept of neurons and synapses, we further define
the symbols that will be commonly used later, as shown in Table 1.
The formal definition of neural network slicing is given as follows:

DEFINITION 1. (Neural network slicing) Let M = (N, S) rep-
resents a neural network and C = (I, O) is a slicing criterion. I =
&, &, ..., &, is a set of model input samples of interest and O =
01,02, . ..,0k is a set of M’s output neurons of interest. The goal of
slicing is to compute subsets No € N and S¢ € S with respect to
C, denoted as M = (N¢, S¢), that significantly (above a predeter-
mined threshold) contributes to the value of any output o € O for any
input sample ¢ € 1.

3.3 Challenges
There are three main challenges to slice a neural network.

(1) Understanding the behavior of each neuron. Unlike an
instruction or a function in traditional programs, a neuron
is typically a simple mathematical operation that does not
have any high-level semantic meaning. The weights of all
neurons in a model are learned as a whole to fit the train-
ing data, while each neuron is just a small building block
whose functionality is vague. However, to compute a slice,
we must first be able to differentiate the neurons based on
their behavior.
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(2) Quantifying the contribution of each neuron. In tradi-
tional program slicing, each instruction’s contribution to the
slicing criterion is binary: an instruction either affects or is
irrelevant to the values of the criterion. In neural network
slicing, almost all neurons are connected to the output neu-
rons in the slicing criterion and contribute to the outputs
more or less. It is difficult to quantify the contribution of
each neuron to extract the most important neurons.

(3) Dealing with large models. Today’s state-of-the-art neu-
ral networks typically contain millions of neurons that are
densely connected. Analyzing a network on such a scale
poses a higher demand for efficiency. How to design algo-
rithms that can leverage existing computing resources to
speed up the analysis is also a challenging problem.

4 OUR APPROACH: NNSLICER

We introduce NNSlicer to address the above challenges. Section 4.1
presents an overview of our approach. Section 4.2 describes how
we understand neuron behaviors through differential analysis. Sec-
tion 4.3 introduces our backward data flow analysis technique that
quantifies the contribution of each neuron to the slicing criterion.
Finally, Section 4.4 briefs how the computation power of GPUs
and multi-core CPUs are utilized to improve the efficiency of our
method.

4.1 Approach Overview

The overview of our approach is illustrated in Figure 1. The pro-
gram under analysis in our system is a pretrained neural network
model, whose weights are already learned to fit a training dataset.
In Figure 1(a), the weight values are labeled on the corresponding
synapses in the network. Our approach mainly consists of three
phases, including a profiling phase, a forward analysis phase, and a
backward analysis phase.

In the profiling phase, all samples in the training dataset are
fed into the model, each sample produces an activation value at
each neuron. We log the activation values of each neuron for all
input samples and compute the mean activation value, which is
the output of the profiling phase (as labeled on each neuron in
Figure 1(b)). The mean activation values can be viewed as the be-
havioral standard of a neuron. Then, in the forward analysis phase,
each interested sample in the slice criterion is fed into the model.
We record the activation value of each neuron and compute its dif-
ference with the mean activation value obtained through profiling
(as labeled on each neuron in Figure 1(c)). Such relative activation
values represent the neuron reaction to the input sample. Finally,
in the backward analysis phase, we start from the output neurons
defined in the slicing criterion and iteratively compute the contribu-
tions of preceding synapses and neurons. The synapses and neurons
with larger contributions are the slices computed for the slicing
criterion. Each step is detailed and formulated in the following
sections.

4.2 Profiling and Forward Analysis

The behavior of a neuron during an inference pass is represented
as an activation value (or a list of activation values if the neuron
was activated several times). The activation values are arbitrary
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numbers produced by simple mathematical operations. We first
need to make sense of the activation values. Specifically, does the
neuron react positively or negatively, and how much?

Our method is inspired by the work on differential power anal-
ysis [41], which decodes the power consumption measurements
of a circuit by testing the circuit with different inputs. The power
consumption difference can be used to infer the input and program
logic. In our case, the activation value of a neuron is like the power
consumption measurement that barely makes sense by itself, but
the difference between the activation values for different input
samples can reveal how the neurons react to each sample.

Specifically, we use the difference between the neuron behavior
for an input sample and its average behavior for all training samples
to understand the neuron reaction to the input. Suppose ¢ is an
input sample and n is a neuron of model M. By feeding & into M,
we would observe an activation value y"(¢) at neuron n. y"(¢) =
mean? y?*(&) if n is activated multiple times, where y['(§) is the
i-th activation value and m is the total number of activations of n
(e.g. m = 1if nis a neuron in a fully connected layer, and m equals
to the number of convolution operations performed by the filter if
n is in a convolutional layer). The average neuron activation value
over the whole training dataset O is calculated by:

Z._f eny"(§)
1D

Such average activation values can be viewed as the behavioral
standard of the neurons, which can be used as the baseline to
measure a neuron’s reaction to a specific data sample. Since y” is
not dependant on any specific input or output, it only needs to be
computed once and can be used for different slicing goals.

In the forward analysis phase, we quantify the reaction of the
neuron n for a specific data sample ¢ as its relative activation value:

Ay" (&) = y"(£) - y"(D) @)

A positive Ay™ (&) means that neuron n reacts more positively

to the sample ¢ than most other samples, and vice versa. The mag-
nitude of |Ay™ ()| represents the sensitivity of n with regard to &.
As an example, the output neuron of an image classification model

that is trained to detect cats would be more sensitive and positively
react to an image of a cat, as compared with an image of a truck.

y"(D) = (1)

4.3 Backward Analysis and Slice Extraction

The backward analysis aims to compute the contribution of each
neuron and each synapse to the interested outputs in the slicing
criterion. Note that the neuron’s reaction to an input sample com-
puted through the profiling and forward analysis is not equivalent
to its contribution. For example, in an image classifier, a neuron
that reacts sensitively to cat images may not have any contribu-
tion if our interested output is the “truck” label. To compute the
contribution, we introduce a backward data flow analysis method.

In traditional programs, extracting the instructions and variables
that contribute to a certain output is easy based on the data flow
graph (DFG), which defines the data dependencies between the
instructions and variables. A neural network can also be viewed as
a data flow graph, but the graph is densely connected. For modern
DNNs s that are organized layer by layer, almost every neuron in one
layer is connected to all neurons in the previous layer (as shown in
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Figure 1: The overview of our approach.

Figure 1). Thus, we need to further analyze the data flow graph to
measure the contribution of each neuron.

The contribution of a neuron or synapse is quantified as an
integer in NNSlicer, denoted as CONTRIB. n is a critical neuron if
CONTRIB,, # 0, and a critical neuron may contribute positively
(CONTRIB,, > 0) or negatively (CONTRIB, < 0) to the slicing
criterion. The same for the synapses.

Our method to compute CONTRIB is to recursively compute
the contributions of preceding neurons and synapses from back to
front. Given a neural network and a list of target neurons, we first
consider the neurons that are directly connected to the interested
neurons, whose contribution can be extracted with their activation
values (in detail later). Then we remove the target neurons from
the network and set the neurons with non-zero contribution as
the target neurons. We repeat the process until the target neurons
do not have any neighboring neurons. The algorithm is described
in Algorithm 1. Note that in practice neurons are organized as
partially ordered layers, thus each iteration of Algorithm 1 deals
with a single layer.

Algorithm 1 simplifies the problem of computing cumulative
contributions of all neurons and synapses in the whole network to
computing local contributions of preceding neurons and synapses in
an operation (line 5). Local contributions mean the contributions
generated solely by the operation. We use the weighted sum opera-
tor (a common operator in neural networks) to illustrate how we
compute the contributions of preceding neurons and synapses.

In the weighted sum operator, the central neuron n has k synapses
(si, s2, ..., Sg) that connect k preceding neurons (ny, ng, ..., ng) to n.

The activation value of n is computed as y = vk

i=1 Wixi, where

Algorithm 1 ComputeContrib: Computing the contributions of
neurons and synapses to a list of target neurons for an input sample

Require: A neural network model M = (N, S), an input sample
£ and a list of target neurons O. A global table CONTRIB that
stores the cumulative contribution of each neuron and synapse
during the inference pass of £, initialized to 0.

: Terminate if O is empty

: Initialize O’ = 0

: for each neuron o € O do

Find 0’s preceding neurons and synapses (N’, S”)

Compute local contributions of N’ and S’ as contrib

Update CONTRIB with contrib

: end for

: for each neuronn € N do

Add nto O’ if n is a predecessor of O and CONTRIB,, # 0

10: end for

11: Obtain N by removing neurons in O from N

12: Call ComputeContrib by setting O = O’ and N = N’

13: return The global cumulative contribution table CONTRIB

=T B LB VSR R

w; is the weight of synapse s; and x; is the activation value of n;.
Suppose the cumulative contribution of n is CONTRIBy,, the local
contribution contrib; of n; and s; is computed as:

contrib; = CONTRIBy, x Ay™ X w;Ax; (3)

in which Ay" is the relative activation value of the central neuron
given by Equation 2 and Ax; is the relative activation value of the
neuron n; (i.e. Ay™). The product of Ay™ and w;Ax; represents
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the impact that n; and s; may have on the global contribution
CONTRIB,,. For example, if Ay™ is negative and w; Ax; is positive, it
means that n; enlarges the negativity of n, yielding an contribution
that is opposite to CONTRIB,,.

The weighted sum operators take the vast majority in today’s
DNN, but there are also other types of operators. In this paper, we
focus on convolutional neural networks (CNNs). Table 2 shows five
common operators that are enough to handle most existing CNN
models. To support other architectures one only needs to define
the method to compute local contributions for new operators, as
shown in Table 2.

The cumulative contribution CONTRIB of neuron n; and synapse
s; in the operation is updated by their local contribution:

CONTRIBy, + = sign(contrib;)

4
CONTRIBg; + = sign(contrib;) “)

We only keep the sign of the local contribution, as different opera-
tions may have different scales of local contributions.

However, updating the cumulative contribution for all neurons
and synapses is time-consuming (a neuron with non-zero cumu-
lative contribution introduces a new branch during backtracking)
and may accumulate contributions from unimportant neurons and
synapses. Thus, we limit the number of local contributions used
to update CONTRIB. The importance of a local contribution is
represented by its magnitude, and those with smaller magnitude
can be excluded when updating CONTRIB. Specifically, we first
sort the local contributions in ascending order of their magnitudes.
The preceding neurons are sorted as ny, ng, ..., ng. Then we try to
find a maximum index j so that ny, ..., nj can be excluded while the
influence on the activation value of n is below the threshold 6. For
example, in a weighted sum operation, the influence of excluding
ni, ..., njis |Z{.<:j w;iAx;/[y|. 6 controls the amount of excluded local
contributions with minimal influence on the functionality of an
operation, and thus the generated slice can be directly used to make
predictions without retraining (evaluated in Section 6.2). The value
of the threshold 6 can be set by different applications to control the
size of the resulting slice.

So far the cumulative contribution CONTRIB captures the con-
tribution of neurons/synapses during the inference of a single input
sample. For a slicing criterion C = (7, O) that may contain mul-
tiple interested samples, the final cumulative contribution is the
sum of the contribution for each sample ¢ € 1. A slice for C is
ME = (NC,SC) where N€ and S are the neurons and synapses
with non-zero contributions. One can also control the size of slice
based on the contributions (as in §6.2).

4.4 GPU and Multi-thread Acceleration

NNSlicer takes a forward analysis pass and a backward analysis
pass for each data sample £ € 7 when computing the slices. It
might be very time-consuming if |7| is large. Since the process
of computing slice for a data sample is independent of each other,
we can take advantage of the parallel characteristic of GPU and
multi-threading to accelerate the overall slicing process.
Specifically, for a large set of data samples |7 |, we first run the
profiling and forward analysis phases on GPU using large batches,
as these two phases only involve forward computation. Then a
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large batch is separated into several small batches. The backward
analysis of each small batch runs on the CPU as a separate thread.
Finally, the batches are merged together to generate the slicing
result.

5 IMPLEMENTATION & OVERHEAD

We implemented NNSlicer in Python with TensorFlow. The profil-
ing and forward analysis are implemented based on TensorFlow’s
instrumentation mechanism. The multi-thread computing is imple-
mented by the distributed python library Ray (https://ray.io).

We evaluated the time overhead of NNSlicer on a server that has
2 GeForce GTX 1080Ti GPUs, 2 Intel Xeon CPUs with 16 cores, and
64GB memory. Table 3 reports the slice time and the architecture
complexity of three models. The time spent by NNSlicer to com-
pute slice for a data sample is roughly 4s, 39s, and 553s for LeNet,
ResNet10, and ResNet18 respectively. When computing slice for a
batch of inputs, the speed is much faster, which is about 0.6s, 3.4s,
and 45.2s per data sample for the three models respectively. Note
that the profiling phase is not included when computing the slicing
speed as it only needs to run once for a model.

6 APPLICATIONS

In this section, we describe three applications to demonstrate the
usefulness and the effectiveness of NNSlicer, including adversarial
defense, model pruning, and model protection. In each application,
we describe why the application is meaningful, how NNSlicer can
help, and how NNSlicer performs compared with other methods.
The main method which we compare NNSlicer against is the
state-of-the-art work by Qiu et al. [57] (denoted as EffectivePath
below). We also include some other baselines for more comparisons.

6.1 Adversarial Defense

Adversarial examples [64] are carefully-crafted inputs that may
lead to wrong predictions. They are usually generated by adding
small permutation to a benign input, which is barely noticeable
by a human. Adversarial attacks may cause severe consequences,
especially in safety- and security-critical scenarios.

As a result, adversarial defense became a hot research topic in
both Al and SE communities. Many approaches tried to make the
DNNs more robust through training [49, 77] or adding advanced ar-
chitectures [51, 60], but it is still hard to obtain a 100% robust model.
Instead, some researchers opted to take another direction: adver-
sarial input detection [47, 57, 70], with which, the deep learning
system can raise warnings or stop serving once suspicious inputs
are detected. Thus, severe attacks can be avoided. In this section,
we discuss how NNSlicer can be used to detect adversarial inputs.

6.1.1  Method. Our insight is that the slice computed by NNSlicer
can be viewed as an abstraction of the decision process, and the de-
cision processes of normal examples and adversarial examples are
intuitively different. As shown in Figure 2, although the normal im-
age and the adversarial one are indistinguishable for a human, their
slices are different. Thus, by learning from the slices of large-scale
normal examples, we can understand the normal decision process
of the DNN. Therefore, given a new input, if its slice is distinctly
different from the normal slices, it is very likely an adversarial
input.
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Table 2: Neuron operations considered in NNSlicer.

Operation Usage Math form Local contribution of i-th input
Weighted sum Convolutional layers and y = § WiXj CONTRIB,, X Ay X w;Ax;
fully connected layers, etc. i=1
Average Average-pooling layers. y= % éc] xj CONTRIB, X Ay X Ax;
Maximum Max-pooling layers. Y = max;_, X; CONTRIB,, x Ay X Ax; if x; =y else 0
Rectify ReLU activation. y=xifx >0else 0 CONTRIB, XAy X Axif x > 0else0
Scale Batch normalization. y= % CONTRIB;, X Ay X Ax

Table 3: The time spent to process an input sample in each
phase. The profiling and forward analysis phases take the
same amount of time as they both only require an inference
pass.

Model  #Params P.roﬁhng/Forward . Backward
Single  Batch  Single Batch
LeNet 42784 3.0s 0.3s 0.5s 0.3s
ResNet10 300K 8.9s 0.4s 30.1s 3.0s
ResNet18 11M 9.6s 0.8s 543.0s  40.4s

"'5.“' .-o 'i., __
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Figure 2: Normal and adversarial examples (top) and their vi-
sualized slices (bottom). Each pixel in the visualization rep-
resents a neuron from a random convolutional layer (sep-
arated to two rows). The neurons with non-zero contribu-
tions are colored (blue for neurons with positive contribu-
tions and red for those with negative contributions).

Specifically, suppose M is the DNN model that may accept ad-
versarial inputs, ¢ is an input sample and M(¢) is the label of &
predicted by M. Using NNSlicer, we can compute a slice My for
each input & by setting the slicing criterion as C = (¢, M(¢ )) We
build a slice classifier F that predicts the label of an input ¢ based
on the slice computed for the input M. By training F with a large
number of normal samples, it can capture the mapping pattern be-
tween the slice shape and the corresponding output category. With
the trained slice classifier F, an input ¢ is identified as adversarial
if F(Mg) # M(£), i.e. the prediction made by the slice classifier is
different from the prediction of the original DNN model.

The input of the slice classifier, i.e. a slice Mg, is represented as a
vector vecg. Each element in vec corresponds to a synapse and its
value is the contribution of the synapse (as described in Section 4.3).
For the simplicity of the input and output representations, many
classification algorithms may be used to build the slice classifier.
We chose to use the decision tree [7] as it is easy to implement and
debug.

Applying NNSlicer to adversarial-input detection has three ad-
vantages: (1) NNSlicer does not require modifying or retraining the
original model, and thus NNSlicer can support any DNN models.
(2) NNSlicer can scale up to support large state-of-the-art DNN
models, while existing methods like ones by Ma et al. [47] and
Gopinath et al. [28] can only support small models. (3) NNSlicer
requires only the normal samples to build the defense, but existing
methods [22, 48, 57, 73] need to train a detector with both normal
and adversarial examples. As the attackers can always use new
adversarial examples, NNSlicer is a much more realistic solution
than those existing methods.

6.1.2  Evaluation. We compare our detection method with two
baselines. For a fair comparison, the baseline methods use the same
classifier to identify adversarial inputs as ours, while the inputs
of the classifier are different. FeatureMap is a naive baseline that
uses the feature maps of convolutional layers as the inputs of the
classifier. EffectivePath is a more advanced baseline that uses the
effective path generated by Qiu et al. [57] to train the classifier.
The experiments were conducted on ResNet10 and the CIFAR-10
dataset (image size 32x32). All the classifiers were trained with
10,000 normal samples, using their respective feature extraction
methods.

We tested NNSlicer and the two baselines on 17 attacks, covering
gradient-based attacks, score-based attacks, and decision-based
attacks. These attacks include FGSM [27] with per-pixel maximum
modification of 2, 4 and 8 (relative to 256 and referred to as FGSM_2,
FGSM_4 and FGSM_38, respectively), Deepfool [50] with constrain
norm Ly and L (referred to as DeepfoolL2 and DeepfoolLinf),
JSMA [55] attack, PGD [49] attack with random start and per-
pixel maximum modification of 2, 4 and 8 (referred to as RPGD_2,
RPGD_4 and RPGD_8), the Ly version of CW attack [11] (CWL2),
ADef attack [2], an attack that just perturbs a pixel (SinglePixel), a
greedy local-search attack [52] (LocalSearch), a boundary attack [8]
(Boundary), an attack of spatial transformation [21] (Spatial), an
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attack that performs binary search between a normal sample and
its adversarial instance (Pointwise), and an attack that blurs the
input until it is misclassified (GaussianBlur). All the attacks are
implemented with Foolbox [58].

For each attack method, we generate adversarial examples from
500 randomly picked normal examples. The examples that success-
fully mislead the model are fed to the detector with their normal
examples. We compute the precision, recall and F1 score of each
detector on each attack, as shown in Table 4.

According to the experiment result, NNSlicer is very effective
in detecting adversarial inputs with an average recall of 100% and
an average precision of 83%, which means that NNSlicer is able to
correctly identify all the adversarial examples generated with these
attack methods (no false negative). Meanwhile, most of the inputs
identified by NNSlicer are indeed adversarial inputs, while only a
few normal samples are misidentified (false positives). Although
EffectivePath also achieves a perfect recall, its precision is much
lower, meaning that the detector may easily misclassify normal
samples as adversarial inputs. The average recall of 63% in Fea-
tureMap represents the feature maps between normal examples and
the adversarial examples are barely discriminative. This phenome-
non indicates the demand for NNSlicer to explore the mechanism
of neural networks.

6.2 Network Simplification and Pruning

The size and complexity of DNN models grow rapidly. Although
these huge models achieve high scores on complicated datasets, they
are cumbersome and slow in real-world, task-specific applications.
How to reduce the model size and speed up the computation is
crucial to the DNN applications.

One acceleration technique is to prune trivial synapses of a large
model to generate a light-weight one. With redundant weights
trimmed off, the computation of executing the model may be re-
duced. Existing network-pruning methods focus on reducing the
network architecture of models for all the output classes [46]. With
DNN slicing, NNSlicer enables more flexible network simplification
and pruning by focusing on a targeted subset of output classes. That
is, for a subset of the original output classes of a model, NNSlicer
can decide the proper model slices for the targeted output classes.
Thus, NNSlicer can generate a smaller model for the targeted output
classes with higher model accuracy. This advantage of NNSlicer is
highly desirable in real-world applications that usually deal with
a small set of output classes (e.g., classifying only different dogs
rather than 1,000 types of animals).

6.2.1 Method. NNSlicer can pick out neurons and synapses critical
to a slice criterion C = (£, O). By setting O to the set of interested
target classes, NNSlicer can compute CONTRIB; for each synapse
s, which represents the synapse’s importance to the target classes.
We can trim out the less important synapses and get a model that
still functions on the target classes.

Specifically, suppose we want to prune M for target classes oT
with prune ratio 7. Let 7T be the set of data samples belonging
to the interested classes. CONTRIBT is the cumulative contribu-
tions computed by NNSlicer, and CONTRIB! is the contribution
of synapse s. For each layer I, we sort all synapses in the layer S;
by the ascending order of their contributions magnitudes. The first
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Figure 3: Accuracy of the pruned models without fine-
tuning.

r x |S;| synapses are pruned, and a neuron is also pruned if its
synapses are all pruned.

6.2.2 Evaluation. To evaluate the ability of NNSlicer to targeted
pruning, each of 210 subsets of CIFAR10’s 10 output classes is
used as the target classes OT. NNSlicer (targeted) represents to
prune synapses according to the contributions computed for the
target classes OT. NNSlicer (all) represents to prune according to
the contributions computed for all output classes O. The compar-
ison between NNSlicer (targeted) and NNSlicer (all) demonstrates
NNSlicer’s ability in target classes. We also compare it with sev-
eral baselines. EffectivePath represents pruning synapses based
on the feature computed in [57]. Weight is based on the absolute
synapse weights, where the synapses with the smallest weights
are trimmed [31]. Similarly, Channel represents to prune the least
important neurons by the average connected weight value [35].
Both Weight and Channel are widely used techniques in the field
of network pruning.

Figure 3 shows the average accuracy over possible target classes.
The accuracy of NNSlicer (targeted) is always high and is around
80% when 55% of weights are pruned. The accuracy of EffectivePath
and Channel are both low in the figure. The accuracy of NNSlicer
(all) and Weight is high only when the prune ratio is below 45%. The
comparison between NNSlicer (targeted) and NNSlicer (all) demon-
strates the ability of NNSlicer to prune for specific classes. The
large gap between NNSlicer (targeted) and EffectivePath indicates
the advantage of NNSlicer to the feature computed by [57].

When the prune ratio becomes larger, we further evaluate the
performance with fine-tuning. To do it, the pruned models are re-
trained on 10k samples for 1 epoch. Figure 4 shows the performance
of the fine-tuned models on two sets of target classes. The fine-
tuned model of NNSlicer is noticeably higher than other methods.
It shows that NNSlicer (targeted) preserves the model’s capability
on targets even when a large portion of weights is trimmed. A short
fine-tuning (1 epoch in this case) is enough for the model to achieve
high accuracy.

One possible reason for NNSlicer’s good performance is that it
preserves the model’s ability to target classes at the cost of other
non-target classes. In an extra experiment, the performance of
NNSlicer (targeted) on non-target classes is remarkably lower than
target classes. On the other hand, the difference of Weight is small.
It means NNSlicer can decompose the model over classes and make
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Table 4: Adversarial input detection accuracy for different attack methods.

Attack Method Eﬁ"ect.iv.ePath Fecmfr?Map NNSlicer
F1  precision recall | F1  precision recall | F1  precision recall
FGSM_2 0.82 0.69 1.00 | 0.55 0.58 0.53 | 0.90 0.82 1.00
FGSM_4 0.71 0.56 1.00 | 0.55 0.60 0.52 | 0.91 0.84 1.00
FGSM_8 0.88 0.79 1.00 | 0.58 0.62 0.55 | 0.92 0.84 1.00
DeepFoolLinf | 0.78 0.64 1.00 | 0.68 0.68 0.68 | 0.92 0.85 1.00
DeepFoolL2 | 0.78 0.64 1.00 | 0.66 0.68 0.66 | 0.92 0.85 1.00
Gradient-based JSMA 0.82 0.69 1.00 | 0.66 0.67 0.66 | 0.92 0.85 1.00
RPGD_2 0.78 0.64 1.00 | 0.59 0.63 0.56 | 0.91 0.84 1.00
RPGD_4 0.82 0.69 1.00 | 0.55 0.62 0.50 | 0.92 0.85 1.00
RPGD_8 0.75 0.60 1.00 | 0.55 0.62 0.50 | 0.92 0.85 1.00
CWL2 0.78 0.64 1.00 | 0.66 0.68 0.66 | 0.92 0.85 1.00
ADef 0.85 0.73 1.00 | 0.66 0.67 0.66 | 0.91 0.84 1.00
SinglePixel 0.67 0.50 1.00 | 0.52 0.44 0.64 | 0.79 0.65 1.00

Score-based

LocalSearch | 0.83 0.71 1.00 | 0.67 0.67 0.68 | 0.92 0.84 1.00
Boundary 0.82 0.69 1.00 | 0.69 0.69 0.70 | 0.92 0.85 1.00
Decision-based Spatial 0.78 0.64 1.00 | 0.59 0.56 0.64 | 0.87 0.77 1.00
Pointwise 0.87 0.76 1.00 | 0.68 0.69 0.69 | 0.92 0.85 1.00
GaussianBlur | 0.87 0.76 1.00 | 0.68 0.68 0.70 | 0.92 0.85 1.00
Average 0.80 0.67 1.00 | 0.62 0.63 0.62 | 0.91 0.83 1.00

Target classes (0,1,5)

Target classes (0,1,2,3)

Accuracy
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Figure 4: Accuracy of the pruned models after fine-tuning
for one epoch.

a trade-off to conserve the ability on target classes. A similar phe-
nomenon is observed in model protection and will be discussed in
Section 6.3.

6.3 Model Protection

DNN models are becoming valuable assets due to the high cost of
the training process, including collecting a large amount of data,
expensive GPU usage, and enormous power consumption. However,
an attacker may retain (or steal) the functionality of a model at a
comparatively low cost [15, 37, 38, 53, 59]. How to protect models
from being stolen is becoming an increasingly important problem,
particularly in the emerging edge computing where models are
deployed to edge servers or even end devices.

Existing solutions of model protection usually leverage encryp-
tion, using homomorphic encryption [12, 26, 79] or zero knowledge

proof [76], or running a model inside trusted execution environ-
ments [16, 17, 68]. All sensitive computation is conducted in the
encrypted mode. However, the cost of these protected computations
is high. For example, CryptoNets [26] takes around 300s to execute
a model on the small MNIST dataset. To reduce the cost of model
protection, one approach is to secure the important computation
only, where NNSlicer may help.

6.3.1 Method. The existing model protection work is constrained
to protecting the model w.r.t. the whole label space [39, 54]. But
the importance of outputs may vary. For some outputs, the data
is more difficult to collect, or the annotation is particularly more
expensive. Because NNSlicer can slice model for certain classes, it
can help to find significant components for the expensive classes
and protect them. We propose to incorporate targeted protection
in this scenario. Compared to existing work, our method is more
flexible and can customize the protection target. NNSlicer selects
synapses from a model and protects their weights. The way to
select synapses is similar to Section 6.2 but NNSlicer selects the
most crucial synapses for the target classes. The selected synapses
are protected from attackers who have to recover the protected
synapses through retraining to obtain the whole model.

6.3.2 Evaluation. In the experiment, we assume a strong attacker
who has a training dataset. The attacker’s dataset size is called the
budget [53]. As NNSlicer protects a limited ratio of synapses, we
use the metric of the accuracy of protected classes after re-training
for 5 epochs. A lower accuracy stands for better protection. We
compare with three baselines: EffectivePath, Weight, and Random.
EffectivePath and Weight are the same methods used in Section 6.2.
Random is to randomly select synapses.

Figure 5 shows the accuracy of the protected classes (Target
classes, the left figure) and the accuracy of all classes (All classes,
the right figure). It can be observed that, after guarded by NNSlicer,
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Figure 5: The accuracy achieved by retraining the models
for 5 epochs. 50% of the parameters (selected with different
methods) in the model are hidden, and the attacker tries to
recover them through retraining. The x-axis is the attacker’s
budget (i.e. number of samples used to retrain). A lower accu-
racy achieved with a fixed budget means better protection.

the retrained accuracy on target classes is below 10%, even when the
budget (i.e. number of samples) achieves 50k. The small accuracy
stands for strong protection. On the contrary, the accuracy of other
methods is all above 30%. For EffectivePath, the accuracy achieves
90%, which means it can not protect target classes at all.

The right figure of Figure 5 illustrates why NNSlicer achieves
better protection. Compared to Weight, although the accuracy of
NNSlicer on target classes is obviously lower, the accuracy over
the whole dataset is higher. It means the accuracy of non-target
classes is very high and NNSlicer do not protect them. This trade-
off between target classes and non-target classes is similar to the
finding in Section 6.2 and may be valuable for applications that
desire to protect a small set of target classes.

7 LIMITATIONS AND DISCUSSION

This section highlights some of the limitations of NNSlicer and
discusses possible future directions.

DNN architectures. We only considered five common opera-
tions that are commonly used in CNN models, while some opera-
tions used in other architectures are not included, such as recurrent
neural networks (RNNs) and graph convolutional networks (GCN).
These architectures should be easy to support in the future by
adding backtracking rules for new operators.

Scalability. In this paper, we did not conduct experiments on
very large models and datasets due to limited time. For large DNN
models with millions of weights, NNSlicer takes about 10 minutes
to compute the slice for an input sample (as shown in Table 3).
Building an adversarial defense (as in Section 6.1) for such a large
model may take several days on a single machine. Although the
process is slow, especially for in-lab experiments, we think it is
acceptable in practice considering the fact that companies usually
train a model on large clusters for several weeks.

Slicing criterion. We mainly discuss the slicing criterion con-
cerning only output neurons, but slicing for an intermediate neuron
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may also be interesting (similar to inspecting an intermediate vari-
able in traditional programs). Such a flexible criterion definition
may enable new applications, e.g. interpreting or debugging the
neural network in finer granularity.

More applications. Beside the three applications discussed in
this paper, there are many other applications that are interesting to
consider. For example, is it possible to compose different slices to a
new model? If it is the case, the way of training networks might
be changed. Besides, is it possible to slice certain attributes from
a trained model, such as a discriminatory attribute (race, gender,
etc.) which we want to exclude from consideration when making
decisions? Last but not least, how can NNSlicer be used to debug
model and diagnose fragile weights? Section 6.1 has proved its
ability to detect adversarial examples, a step forward is to find the
deviant neurons or synapses that are critical for errors. Masking
them out or adjusting their value may improve the model accuracy.

Other slicing techniques. NNSlicer relies on a set of inputs to
compute the slice (i.e. dynamic slicing). There are various other
slicing techniques that may be interesting to be applied to neural
networks. For example, static slicing might be used to compute
input-independent slices (as in Section 6.2) much faster as each
input doesn’t need to be processed separately. Conditioned slicing
[10] may help the developers to understand the conditions (e.g. illu-
mination, viewpoint, etc.) under which the DNN is more vulnerable.
Amorphous slicing may be used to merge neurons and synapses
inside the network and slim the network structure [33].

8 CONCLUDING REMARKS

This paper proposes the idea of dynamic slicing on deep neural net-
works and implements a tool named NNSlicer to compute slices for
convolutional neural networks. The working process of NNSlicer
consists of a profiling phase, a forward analysis phase, and a back-
ward analysis phase. The profiling and forward analysis phases
model the reaction of each neuron based on its activation values.
The backward phase traces the data flow recursively from back to
front and computes the contributions of each neuron and synapse,
which are used to calculate the slice. The usefulness and effec-
tiveness of NNSlicer are demonstrated with three applications on
adversarial input detection, targeted model pruning, and selective
model protection. The code and data of NNSlicer and all applica-
tions will be made available to the community.
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