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Abstract—Long-term battery degradation prediction is an im-
portant problem in battery energy storage system (BESS)
operations, and the remaining useful life (RUL) is a main indi-
cator that reflects the long-term battery degradation. However,
predicting the RUL in an industrial BESS is challenging due
to the lack of long-term battery usage data in the target envi-
ronment, domain difference between BESS environments, and
incomplete battery charging/discharging patterns in industrial
scenarios. To solve these challenges, we propose a retrieval-
based approach, which predicts the RUL of the target battery
based on the full-lifetime usage data of reference batteries
retrieved from other environments. The basic idea is that
the reference batteries with common early-life features are
more useful for predicting long-term degradation of the target
battery. Based on experiments with both laboratorial datasets
and industrial datasets, our method can constantly achieve
higher prediction accuracy than state-of-the-art baselines.

1. Introduction

Battery Energy Storage Systems (BESS) have emerged
as an important component in numerous critical industrial
scenarios, such as data centers, cellular base stations, and
electric stations. They are typically used as uninterruptible
power supply (UPS) systems and renewable energy storage
systems. A typical BESS is composed of a myriad of inter-
connected rechargeable batteries, often lithium-ion batteries,
which store energy derived from a variety of sources for
discharge when necessary. Given the significant financial
investment and critical operational role of BESS, the optimal
and safe operation of these systems is a pressing concern in
the industrial sector.

An intrinsic aspect of BESS operation is the degradation
of battery health, a factor which significantly influences the
system’s overall performance and lifespan. Battery health
degradation refers to the gradual decrease in battery capacity
and efficiency over time due to various physical and chemi-
cal factors. As the main power supply medium in BESS,
Lithium-ion batteries encounter inevitable degradation in
their performance characteristics, such as battery capacity
and output power, throughout their lifespans. Since acceler-

ated battery health degradation not only leads to expedited
performance deterioration but can also engender safety con-
cerns [1], it’s essential to predict the long-term degradation
of battery health to help maintain battery health and provide
a basis for timely battery replacement. Meanwhile, a precise
prediction of battery degradation can facilitate preemptive
measures to extend the battery lifespan and enhance its
overall performance [2], [3], [4], [5]. A key metric to reflect
long-term battery degradation is the remaining useful life
(RUL), which represents the length of time (or number of
cycles) a battery is likely to operate before it requires repair
or replacement (e.g. when the battery capacity is only 70%
of the original capacity).

Existing approaches have studied leveraging early-life
battery degradation data for RUL prediction [6], [7], [8],
[9]. However, their methods are mostly designed for in-
laboratory battery experiments, rather than in-deployment
battery operations. We summarize three main challenges for
long-term battery degradation prediction in industrial BESS.

1) Domain difference between BESS. A primary
technical challenge associated with predicting bat-
tery health degradation arises from the domain dif-
ferences between battery systems. Different battery
systems exhibit variations in terms of their inter-
nal chemistry, design, and operational conditions.
These differences result in varying degradation pat-
terns, making it challenging to develop a universal
prediction model applicable across all battery do-
mains.

2) Lack of long-term degradation data. In a typical
BESS, all batteries are used as a whole and there is
often only early-life data avaliable for them. This
means that there is no full-lifetime reference data
to learn the long-term battery degradation pattern.

3) Incomplete battery charging/discharging. Un-
like in-laboratory experiments that usually fully
charge/discharge the batteries to understand the
degradation in ideal usage scenarios, the batteries
used in BESS are charged/discharged based on the
actual workload, making it difficult to adopt the
methods that rely on full-cycle features.



Due to these challenges, it is required to predict the long-
term battery degradation in the target BESS environment
based on early-life data. Obviously, solely relying on the
data collected from the target BESS environment is infea-
sible due to the absense of long-term degradation data for
reference. Thus, the problem becomes how to effectively
utilize the long-term usage data from other domains (e.g.
other BESS or laboratory experiments). Directly learning
the degradation pattern from other domains may face the
data distribution shift problem [10] and lead to suboptimal
performance, due to the domain difference between bat-
tery deployment environments. Meanwhile, applying trans-
fer learning or domain adaptation techniques [11] is difficult
because of the lack of long-term battery usage data in the
target domain as training signals.

To address these challenges, we introduce a retrieval-
based method for long-term battery degradation prediction.
Our method is inspired by the Retrieval Augmented Gener-
ation (RAG) techniques that have demonstrated remarkable
effectiveness in various generative tasks [12], [13], [14]. The
basic idea of our approach is to retrieve the long-term usage
data of source batteries that share similar early-life patterns
as the target battery. The long-term usage data serves as the
reference for long-term degradation prediction of the target
battery. Such a design mitigate the problems of data scarcity
in the target BESS and domain difference between batteries.

Specifically, we design an end-to-end architecture,
named RetrieveNet, to implement the retrieval-based predic-
tion. The key components of RetrieveNet include a battery
feature encoder that converts the early-life usage data of
a battery to a embedding vector, a relation analyzer that
predicts the relevance between two batteries based on their
early-life embeddings, and a retrieval-aggregatation module
that selects top-k reference batteries from the source dataset
and aggregate them for degradation prediction of the target
battery. The incomplete charging/discharging problem is
addressed by tailoring the battery feature encoder to rely
on common charging intervals between different batteries.
These components are jointly trained using the long-term
usage data of various source batteries, and applied to the
target battery with only early-life data available.

We conduct experiments on both public laboratorial data
and private industrial data to evaluate our approach. The
results have demonstrated remarkable effectiveness of our
method in using small-scale eary-life data for long-term
degradation prediction. For example, the accuracy of RUL
prediction of our approach is 21.5% higher than state-of-
the-art baselines.

The main contributions of this work are as follows:

e We study the problem of battery degradation pre-
diction for BESS operations and highlight three
challenges including domain difference, absence of
full-lifetime reference data, and incomplete charg-
ing/discharging.

e We propose a novel retrieval-based battery degrada-
tion prediction method to address the challenges.

e We evaluate our approach on both laboratorial

datasets and industrial datasets and demonstrate the
effectiveness of our method.

2. Related Work

Degradation prediction of batteries has attracted signif-
icant attention in recent years, primarily due to its pivotal
role in ensuring accurate estimation and safe operation of
batteries. Researchers have devised a lot of methods in a bid
to amplify the adaptability and accuracy of these prediction
techniques. These methods typically span two categories,
model-based techniques and data-driven approaches.

Model-based techniques: Among the model-based
techniques, there has been a surge in developing electro-
chemical models that capture the intrinsic behaviors of
lithium-ion batteries, often accompanied by aging mecha-
nism analyses. Torchio et al. have proposed a finite volume
method (FVM) within the pseudo-two-dimensional (P2D)
Li-ion battery model that offers a simulation for battery
pack design and management while reflecting charging and
discharging cycles [15]. Li et al. introduced the single-
particle model (SP), which not only estimates the state
of charge but also monitors the physicochemical reactions
occurring within the Li-ion battery. This model particularly
stands out due to its inherent noise adaptability from sensors
[16]. Recognizing the computational inefficiency inherent to
the SP model, an enhanced version has been introduced,
which incorporates stress-assisted diffusion. This enhance-
ment ensures improved predictive accuracy in scenarios like
changing liquid concentrations during complex discharge
processes [17]. Nevertheless, these methods often encounter
challenges when adapting to intricate and dynamic environ-
ments, being most suitable for specific battery types and
their respective charging/discharging settings. The necessity
for precise modeling of lithium-ion batteries often demands
significant time and effort.

Data-driven approaches: Data-driven methods, partic-
ularly those leveraging neural networks, circumvent the
need for intricate physical modeling of batteries. They have
proven adept at forecasting the RUL of batteries under
multifaceted conditions, thus emerging as potent alternatives
to traditional modeling techniques. For instance, the SVM
algorithm utilizes voltage ascent during the charging phase
and changes in voltage derivative (DV) as training features,
achieving higher accuracy levels than conventional neural
networks [18], [19]. Additionally, the Gaussian process re-
gression (GPR) model [20] leverages Incremental Capac-
ity (IC) which, after wavelet filtering, undergoes hyper-
parameter optimization via the conjugate gradient method
and the multi-island genetic algorithm (MIGA) [21]. These
optimizations render predictions in a probabilistic density
format, ensuring high precision but also demanding signif-
icant computational resources and intricate hyperparameter
tuning. Deep learning, especially techniques like multi-scale
convolutional neural networks, has demonstrated superior
performance in RUL predictions by extracting features at
various scales [22]. Specifically, the Multi-scale dilated



convolution network (MsDCN) with its depthwise separa-
ble convolution (DSC) has exhibited enhanced prediction
accuracy and computational efficiency in comparison to
traditional CNN models. While promising, the caveat with
most RUL prediction methodologies is their heavy reliance
on voluminous battery data, posing challenges for systems
with constrained data availability.

In emerging battery scenarios, there may be instances
where the battery is in its nascent cycles. Thus, long-term
RUL predictions are necessitated based on limited early-
cycle features and RUL information. Even prevalent tech-
niques like transfer learning demand comprehensive cycle
data from the target domain before predictions via model
transfers can be executed. RetrieveNet stands out in this
realm, processing, sampling, and encoding source domain
features to create a retrieval library of battery characteristics.

In this paper, we introduce an innovative RUL prediction
method for BESS batteries based on RetrieveNet. Our pro-
posed methodology seeks to address the limitations inherent
in both traditional and data-driven techniques, aiming to
enhance the accuracy and speed of predictions for indoor
climate control systems, especially under data-restricted
conditions.

3. Method

Our work aims to forecast the long-term degradation
of batteries by predicting their remaining useful life (RUL)
leveraging early-cycle features. Since only early-cycle data
is available when the model is launched, it’s infeasible to
directly train a DNN model with the target-domain data
and achieve a satisfying prediction accuracy. Therefore, it is
desired to effectively utilize the full-lifecycle battery usage
data from other domains.

Inspired by the concept of Retrieval Augmented Gen-
eration (RAG), we take a retrieval-based approach to bat-
tery degradation prediction. RAG allows the model to be
supplemented with existing data, thus reducing the pressure
obtaining the effect of a large-scale pre-trained model using
only a small-scale model. The effectiveness of RAG has
been demonstrated in REALM [12], where the authors
empirically showed that REALM’s retrieval approach out-
performs T5-11b, a model that is two orders of magnitude
larger in OpenQA benchmarks, while employing a signifi-
cantly smaller parameter count. RAG makes it possible to
get better results with fewer parameters and less training
data. Due to the excellent performance of RAG on NLP
tasks, we decided to transfer the method to the problem of
battery RUL prediction. To achieve this, we introduce the
RetrieveNet, designed to retrieve reference batteries from
the source domain with similar early-cycle features as the
target battery and aggregate them to predict the RUL target
of target battery.

The overall architecture is shown in Figure 1. In a
nutshell, RetrieveNet predicts the future trends of a target
battery with the assistance of three main components. First,
a siamese sequence encoder is used to encode the early-
life feature of source and target batteries into the same

embedding space. Then, these embeddings are fed into a
relation analyzer as source-target pairs to obtain the rele-
vance between each source battery and the target battery.
The most relevant (top-k) source batteries are retrieved, and
their full-life usage data is aggregated to predict the future
trend of the target battery. In this way, RetrieveNet is able to
more effectively use the source-domain data despite the data
shortage and domain difference issues for the target battery.
The whole process is trained end to end using the full-life
usage data of multiple batteries. The following sections will
introduce the key components in more detail.

3.1. Feature Retrieval Library Construction

To construct the feature retrieval library, we first sample
data and extract feature for each battery.

Suppose we want to predict the battery RUL based on
[ cycles of early-life usage data, we need to obtain the
mappings between [-cycle usage data and RUL for many
batteries. We adopt a sliding window mechanism to obtain
such mappings from the battery sample sequences. Specifi-
cally, given a full-life battery usage trace with IV cycles (/V
is the total number of cycles before end-of-life), we sample
multiple /-cycle subsequences from it and calculate the RUL
for each of them as N — 7 — [, where 7 is the index of the
first cycle in the subsequence. When obtaining the training
samples, we sample the windows starting from the 10-th
cycle to avoid instability in early cycles, and set the window
stride to s to reduce redundancy between different samples.
For further illustration, we use z; to represent the battery
usage features at i-th cycle (usually the features contains
the normalized voltage and capacity, the diffrential voltage
and capacity, and relative capacity etc. in the cycle [23]),
and X; = {x;,x;y1, -+ ,x;y;} represents the sequence of
features starting from ¢-th cycle with window size .

Repeating the window sliding process, we can obtain a
feature sequence pool which contains all sequences sampled
from all source-domain batteries. Then we use an encoder
to encode the sequences into feature vectors, denoted as
Enc(X;). The encoder comprises two linear layers, each
followed by a ReLU activation function. This structure not
only enhances the model’s non-linearity but also ensures
the capture of complex patterns within the input features.
Dimension reduction is applied for computational efficiency
and to mitigate potential overfitting. Once encoded, the
features are transformed into a continuous vector space,
capturing essential information for assessing similarity with
the source domain batteries and furnishing critical data for
subsequent RUL predictions.

After this step, we have a dataset with many <feature
embedding, true RUL> pairs. They are used later as the
retrieval set for the target battery degradation prediction.

3.2. Relation Analysis and Reference Selection

After encoding, the feature embeddings are normalized
and piped into a relation analysis module in RetrieveNet.
This module computes the relevance between the encoded
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Figure 1: The overall architecture of our approach.

features of two batteries from the source and the target
domains. The relation analyzer calculates the relevance be-
tween the two batteries by simply computing the dot product
between their feature embeddings.

When predicting the RUL for the target battery, we
first extract the feature sequence X and obtain feature
embedding Enc(X) following the process in Section 3.1.
The relation analyzer calculates the relevance score between
the target feature embedding and each feature embedding
in the retrieval set. A higher relevance score indicates a
higher similarity between the early-life features of the target
battery and the corresponding source battery, which implies
that the source batteries are more valuable to assistant the
RUL prediction of the target battery. Considering the balance
between accuracy and efficiency, we selects top k source bat-
teries with the highest relevance scores to form the reference
set. This strategy reduces the computational complexity and
minimizes the noise from low-relevance features.

3.3. Feature Aggregation and Prediction

After obtaining the reference batteries, RetrieveNet
will aggregate the information from the retrieved
batteries from the source domains to predict the
RUL of the target battery. We define the encoding
function as FEnc, the encoded feature embedding
of the target battery as FEnc(X'79¢), the retrieved
feature embeddings of source batteries as XS 70"¢ =
{EnC(Xsourcefl)’ EnC(XSOUTCS*Q), e EnC(Xsourcefk)}’
and the ground-truth RULs of the retrieved source batteries
as ysource {Ysource—1’ Ysource—Q’ .. ’Ysource—k}'
RetrieveNet concatenates all these vectors and values to
form a single vector V, which is used as the input of the
final predictor. The predictor is a multi-layer perceptron
(MLP), and its output is the prediction of the RUL of
the target battery. Our aim for this network is to capture
the non-linear relation between the target features and the
retrieval features, utilizing the ground truth of the retrieved
source batteries to accurately estimate the target RUL.

3.4. End-to-end Inference and Training

The steps described above are elaborated in Algorithm
1. In the algorithm, lines 2 to 4 utilize the sliding window to
construct the encoded feature embeddings and store them in
the library. Lines 6 and 7 randomly select a reference set and
mask the vectors originating from the same battery source
as the target vector. Lines 9 and 10 calculate the similarity
between the target vector and the retrieved vectors, then sort
and pick the top k vectors with the highest similarity, and
retrieve the corresponding RUL from the library. Lines 11
to 13 aggregate the target feature vector, retrieved feature
vectors, and retrieved RULSs as the input to the MLP, and the
output result of the MLP is taken as the predicted RUL. For
the training stage, we use mean square error (MSE) as the
loss function since it can intuitively elaborate the difference
between predicted RUL and the ground truth.

When training the model with the source batteries, we
randomly select a battery as the target battery in each step
and follow the above process to obtain a predicted RUL. The
loss is calculated as the mean squared error (MSE) between
the predicted RUL and the actual RUL.

3.5. Source-Target Feature Alignment

An important issue that worth noted is the feature
(mis)alignment between the source and target batteries in
real-world BESS. Specifically, the batteries in the target
BESS may have significantly different charging/discharging
pattern as the source BESS (e.g. more/less frequent charg-
ing, different loads, etc.). We use data augmentation and
charging interval alignment to address this issue.

Identification of Common Charging Interval for Fea-
ture Extraction. Many existing approaches assumes that
the batteries are used with periodic full charges and dis-
charges, but real-world BESS often embraces incomplete
charge/discharge cycles. Although such incomplete patterns
lack clear start or end points for charging phases, they’re
usually still regular. For instance, many BESS would charge
the batteries to 100% in every night to ensure maximum



Algorithm 1 Training process of RUL prediction algorithm
in RetrieveNet

Input: The feature sequences of target battery
Xtarget {Xtargetfl Xtarget72 . Xtargetfm}
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17: end for
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capacity available in the next day. Building on this obser-
vation, we propose to identify a periodic charging interval
(e.g. charging from 50% to 90%) that is shared between
source and target batteries, and extract features from this
interval to ensure feature alighment. The extracted features
can be directly used in Algorithm 1 in the same way as fully
charged/discharged batteries.

Extending the Retrieval Set with Data Augmentation.
Another problem is that the source and target batteries may
not be used at the same pace. For example, some batteries
are fully charged once in every week and some may be
charged every day. This may lead to insufficient reference
samples in the retrieval set that share similar early-life
feature with the target battery. To address this problem, we
propose to create more samples by scaling the battery usage
data in the time domain. Specifically, we introduce an spline
interpolation-based data augmentation approach. Spline in-
terpolation is popular since the interpolation error can be
very small even with using low-degree polynomials for the
spline, and only require few computational cost. To apply
spline interpolation for data augmentation, we first create
new sampling cycles based on given scaling rates. Then
create interpolation splines between original data points and
calculate values of the polynomials at those sampling cycles
to get the new data points. The degree of the polynomials
can be various according to the complexity of the original
data. In the battery charging and discharging scenarios, we
use the cubic polynomials as the spline function.

4. Evaluation

4.1. Experimental Setup

Datasets. We evaluate our method on two publicly ac-
cessible laboratorial datasets and a industrial dataset col-
lected from an IDC. Each dataset is characterized by diverse
charge-discharge regimes, ambient thermal conditions, and
battery chemical compositions.

The first public dataset, referred to as the “EES dataset”,
was derived from the work of Ma et al. [23] published in
Energy & Environmental Science. This dataset aggregates
data from 77 LFP/graphite cells. Each cell underwent a
distinct multi-stage discharge protocol, albeit they uniformly
conformed to a singular rapid charging strategy. This uni-
formity accentuates the intricacies of the discharge process.
Another public dataset, termed the “NE dataset”, was intro-
duced in Severson et al. [24] published in Nature Energy.
It assimilates information from over 100 LFP/graphite cells,
governed by 72 diverse charging protocols. Notwithstanding
the heterogeneity in charging routines, a consistent discharge
protocol is prevalent across the cells, thus underscoring the
variability inherent in the charging dynamics.

The industrial dataset is collected from an Internet Data-
center (IDC), henceforth denoted as the “IDC dataset”. The
datacenter is equipped with two Battery Energy Storage
Systems (BESS), wherein each BESS contains 8 battery
modules. Every individual module is constituted of 20 se-
rially connected lithium iron phosphate batteries. Primarily
designed to act as auxiliary power reserves, these batteries
ensure the continuity of operations without interruptions.
Periodic charging/discharging assessments are conducted
monthly to validate their operational efficacy. In our exper-
iments, one BESS was designated as the source while the
other was treated as the target.

Baselines. We compared our method with the methods
used in Ma et al. [23] and Severson et al. [24] (abbreviated
as EES and NE respectively), three supervised training
approaches using different models (MLP, RNN, and LSTM),
an autoregressive timeseries forecasting method (ARIMA).
All methods except for ARIMA use the same training data
to train the prediction model. ARIMA use the early-life
capacity values of the test battery to iteratively predict the
next-cycle capacity.

Metrics. In order to provide a rigorous quantitative
evaluation of the RUL prediction models, three universally
recognized metrics were utilized: RMSE, R?, and MAPE.

1) Root Mean Square Error (RMSE): RMSE offers
a measure of the standard deviation of the residuals,
providing insight into the discrepancies between the
predicted and observed RULs. It is mathematically
represented as RMSE = \/% S (Y =93,
where 7is the RUL predicted at the ith cycle, y* de-
notes the actual observed RUL, and n corresponds
to the total cycles associated with a particular cell.

2) Coefficient of Determination (R2?): The R? value
delineates the fraction of variance in the depen-




dent variable that can be ascertained from the
independent variable(s2). It can be articulated as
R?=1- %, with ¢ being the average
RUL, determined by j = 1 37" 4/,

3) Mean Absolute Percentage Error (MAPE):
MAPE quantifies the prediction accuracy in a per-
centage format, offering the advantage of rendering
errors in a consistent unit scale. The equation for

MAPE is given by: MAPE = 100 5~ | %‘ In
this context, y symbolizes the initial cycle life of
the cell during RUL prediction. Utilization of this
metric assists in counteracting the disproportionate
impact of errors observed towards a battery’s later
stages, where absolute variations can greatly exceed

authentic RUL values.

For an encompassing assessment over diverse test cells,
the arithmetic mean of these metrics was determined across
all test cells for subsequent comparison.

4.2. Results

EES Dataset. On the EES dataset, 55 batteries was
employed to formulate the training set and establish the
retrieval library. The RUL prediction accuracy is measured
on 22 other test batteries. The overall comparison with the
baseline methods is shown in Table 1. The EES and MLP
methods exhibited remarkable prediction accuracy across
all baselines, with an RMSE of 186 cycles and 182 cycles
respectively Yet, RetrieveNet demonstrated a global RMSE
of 146 cycles, a MAPE of 6.19%, and an R? of 0.881,
outperforming all of the baselines, coupled with amplified
confidence.

The detailed prediction results of RetrieveNet is illus-
trated in Figure 2. The initial predictive outcomes exhibited
minor deviations around the genuine RUL. Conversely, with
the progression of battery age, these forecasts steadily con-
verged with the factual values, culminating in a nuanced
approximation of the RUL, underscoring the viability of the
adopted methodology. It is worth noting that a predominant
portion of the relative discrepancies resided within the range
of [-200 cycles, 200 cycles], implying that our model offers
a precise prediction of the RUL for every battery charge-
discharge cycle, demonstrating its reliability.

NE Dataset. On the NE public dataset, the prediction
models are trained with the data of 82 batteries and applied
to estimate the RUL of 38 test batteries. A subset of four bat-
teries was omitted from the analysis due to an elevated level
of measurement noise. The RetrieveNet method showcased
an aggregate RMSE of 73 cycles, a MAPE of 7.3%, and
an R? of 0.767, as detailed in Table 1. In contrast with the
conventional NE model, there was a decrement of 65.9% in
the prediction RMSE, denoting a substantial augmentation
in prediction precision. Employing the analogous methodol-
ogy, the MLP Model, RNN Model, and LSTM Model posted
RMSE metrics of 82, 79, and 78 cycles respectively on the
NE dataset, corroborating the effectiveness of the established
framework in RUL prognostication.

1000
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Figure 2: Predicted results for the 22 EES test batteries.
Subfigures (a), (b), (c), and (d) depict the predicted RUL
versus the actual RUL for each test battery, where the solid
line represents the ideal outcome when predicted RUL con-
sistently matches the actual RUL. The figure also presents
the density distribution of the RUL prediction error. For
clarity in representation, RUL is shown every 20 cycles.

As delineated in Figure 3, a predominant segment of
batteries, during the forecasting phase, adeptly anticipated
the authentic RUL. Moreover, with an escalation in the
enumerated initial battery cycles, symbolized as K, the
metrics of both RMSE and MAPE observed a consistent
decrement, congruent with the projected outcomes. As the
volume of anticipated battery feature cycles in the targeted
domain amplifies, a richer congruence emerges within the
feature retrieval library, culminating in enhanced precision
and a contraction in prediction discrepancies. In pragmatic
manufacturing requisites, contingent on the extant feature
magnitude of the target battery in focus, the congruent
feature cycle span can be judiciously modulated, thereby
realizing a dynamic and adaptable RUL prediction.

IDC Dataset. In the evaluation of the IDC dataset, which
encompasses real industrial batteries, it was discerned that
these batteries experience fractional charge and discharge
cycles contingent upon manufacturing stipulations. Given
that the degradation in battery capacity hadn’t yet surpassed
the demarcated threshold and reached the end of life, it
became infeasible to obtain the groundtruth RUL of the
batteries. Therefore, when applying our prediction method
to the IDC dataset, we let the model predict the battery SOH
(state of health) after certain number of days (e.g. 50, 100,
200 days), rather the predicting the remaining days to reach
certain capacity (i.e. RUL). These two goals are equivalent
from the prespective of degradation prediction algorithms.

The charge-discharge dynamics of IDC batteries pre-
sented a heterogeneous pattern, revealing habitual yet non-
absolute cycles in pragmatic deployment. Temporal days
were designated as the metric intervals for battery attributes
and the corresponding SOH. To bolster data heterogene-



TABLE 1: The RUL prediction results of different methods on two public datasets.

Metric Method EES Dataset NE Dataset
EES / / 186 / / /
NE / / / 214 / /
MLP 190 205 182 82 79 68
RMSE (Cycles) RNN 246 218 235 89 87 69
(lower is better) LSTM 180 128 522 78 67 65
ARIMA 741 773 726 1150 685 646
RetrieveNet 173 166 146 73 59.63 58
EES / / 0.804 / / /
NE / / / / / /
MLP 0.819 0.737 0.761 0.744 0.682 0.693
R2 RNN 0.676 0.743 0.602 0.613 0.482 0.304
(higher is better) LSTM 0.814 0.92 -0.497 0.723 0.769 0.371
ARIMA -1.53 -1.9 -1.81 -144 -90.1 -108
RetrieveNet 0.856 0.857 0.881 0.767 0.763 0.772
EES / / 8.72 / / /
NE / / / 10.72 / /
MLP 8.4 8.92 7.93 9.91 9.12 791
MAPE (%) RNN 12 9.51 11.1 8.34 10.55 8.49
(lower is better) LSTM 7.51 5.27 23.8 8.42 7.31 7.49
ARIMA 33.7 35.9 334 219 122 113
RetrieveNet 7.7 7.08 6.19 7.35 6.04 5.89

Predicted RUL (cycles)

I
0 1000 2000
Actual RUL (cycles)

Figure 3: Predicted results for the 38 NE test batteries. The
figure depicts the predicted RUL versus the actual RUL
for each test battery, where the solid line represents the
ideal outcome when predicted RUL consistently matches the
actual RUL. The figure also presents the density distribution
of the RUL prediction error. For clarity in representation,
RUL is shown every 20 cycles.

ity, retrospective SOH data from batteries situated in the
IDC’s northern region underwent augmentation via spline
interpolation-centric data enhancement methodologies. Pur-
suant to this enrichment, sampling intervals materialized at
delineated magnification ratios, culminating in the formation
of a battery health retrieval compendium.

During the model’s training phase, the inaugural SOH
metric from the prevailing i-cycle sequence in one group
was harnessed as a benchmark. Concomitant trajectories
were discerned within the retrieval repository, forecasting
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Figure 4: The prediction error heatmap on the IDC dataset.
The vertical ¢ represents the number of days of the input
SOH data, and the horizontal j denotes the number of days
for the predicted SOH. The values represent the loss between
the predicted SOH and the actual SOH.

the cycle count j' requisite to attain the SOH post the j-th
cycle. The topmost k congruent trajectories were earmarked
as benchmarks. Their forecasted metrics were weighted vis-
a-vis their congruence scores, aggregated, and the discrep-
ancy between the forecasted j’ cycle and the factual j cycle
was quantified as the loss. An analogous computational
strategy was appropriated during the evaluation phase, with
the results explicated in Figure 4.

The RetrieveNet model manifested remarkable precision

on this empirical battery dataset. Utilizing 50 days of ac-
cessible early-life SOH records and forecasting the SOH



after 100 days incurred a deviation of 4.77%. Conversely,
when 100 days of antecedent SOH records were utilized,
the deviation for prognosticating the forthcoming 100 days’
SOH diminished to 2.58%, proficiently addressing tangible
battery health forecasting exigencies. The reasonable pat-
tern in the prediction error heatmap also demonstrates the
consistency of the RetrieveNet model across different usage
settings.

5. Conclusion

We introduce a battery degradation prediction method
tailored for BESS. Specifically, we design a retrieval-based
method to deal with the data scarcity, domain difference, and
incomplete charging/discharging characteristics of batteries
in BESS. The effectiveness of our method is demonstrated
with experiments on both laboratorial and industrial datasets.
A possible threat the validity of our method is that the
shortage of full-life battery usage data and the huge domain
difference between BESS domains may make it harder to
retrieve meaningful references for degradation prediction.
Our future work plans to further test and improve our
method on more large-scale real industrial datasets with
more complex battery dynamics.
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