
Improve Dynamic Analysis Coverage
in Android with DroidBot

Yuanchun Li, Hanno Lemoine and Hugo Gascon
EECS
Peking University

Research Questions
DroidBot aims to address two research questions:
1. How to improve coverage in automated malware dynamic analysis? Currently,
automated test input generation tools include Monkey[1], Dynodroid[4] and
GUIRipper[5], etc. Monkey achieves the highest coverage according to an empirical
study[1].

2. How to measure the coverage of malware dynamic analysis? For benign apps, the
metric to measure the performance of dynamic analysis (or testing) is method
coverage, line coverage and path coverage etc. However, for malware analysis, the
traditional coverage does not reflect the effectiveness of testing tool on one hand, and
is difficult to measure on the other hand.

Abstract
As it is the case for malware targeting the desktop, dynamic analysis is also used for
detection of Android malware. While dynamic analysis works by executing the target
app in a real Android environment and monitoring the behaviors during runtime, its
effectiveness relays on the amount of code it is able to execute, this is, its coverage.
Because some malicious behaviors only appear at certain states, the more states covered,
the more malicious behaviors detected. The goal of DroidBot is to help achieving a
higher coverage in automated dynamic analysis. In particular, DroidBot works like a
robot interacting with the target app and tries to trigger as many malicious behaviors as
possible.
The Android official tool for this kind of analysis used to be Monkey, which behaves
similarly by generating pseudo-random streams of user events. Instead, DroidBot
understand the app by statically analyzing its code and dynamically analyzing its UI
hierarchy. This knowledge is extremely helpful to generate relevant interactions with the
app.
With the knowledge from static and dynamic analysis, DroidBot adopts a biased-random
strategy to trigger more sensitive behaviors. Experiments had shown that DroidBot is
better than Monkey in discovering sensitive behaviors of malwares.

Approach

Conclusion
We propose DroidBot, an automated test input generation tool for malware dynamic
analysis. DroidBot configure the test environment based on static information extracted
from APK file in order to make the device more like a realistic phone, and uses biased
random strategy based on a UI transition graph model to trigger more sensitive behaviors
at runtime.
Through experiments with DroidBox, we find DroidBot is able to trigger sensitive
behaviors in dynamic analysis, more and faster compared to Monkey, which is the state-
of-the-art.

Figure 2.AUI transition graph example and UI state examples

References
[1] Lantz, P., Desnos, A., & Yang, K. (2012). DroidBox: Android application sandbox.
[2] UI/Application Exerciser Monkey. http://developer.android.com/tools/help/monkey.html
[3] Choudhary, S. R., Gorla, A., & Orso, A. (2015, November). Automated Test Input Generation
for Android: Are We There Yet?(E). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on (pp. 429-440). IEEE.
[4] Machiry, A., Tahiliani, R., & Naik, M. (2013, August). Dynodroid: An input generation system
for Android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (pp. 224-234).ACM.
[5] Hackner, D. R., & Memon, A. M. (2008, May). Test case generator for GUITAR. In Companion
of the 30th international conference on Software engineering (pp. 959-960).ACM.
[6] Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., & Enck, W. (2015, May). Appcontext:
Differentiating malicious and benign mobile app behaviors using context. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on (Vol. 1, pp. 303-313). IEEE.

Evaluation
We compare DroidBot with Monkey on effectiveness of triggering sensitive behaviors of
Android malwares. We consider the amount of sensitive behaviors triggered and the
speed of triggering sensitive behaviors.
Figure 3 demonstrates that DroidBot is able to trigger more sensitive behaviors than
Monkey, and Figure 4 demonstrates that DroidBot can trigger sensitive behaviors faster.

Acknowledgements
I would like to thank my GSoC mentors Hugo Gascon, Hanno Lemoine, and other cool
guys from the Honeynet Project, I learned a lot from them.
Thank the open source projects AndroidViewClient and Androguard that DroidBot is
based on.
Also I would like to thank Google for offering the chance to students to help them get
involved in open source projects.

DroidBot Brain

Android
DeviceApp

Runtime
Monitor

Event
Manager

Static
Analyzer

Env
Manager

.apk

manifest
resources

code
security threats

sensitive conditions
visual info
textual info

program info

selected view
selected intent

dummy documents
fake sensor data
specific settings

UI hierarchy
Running processes

gestures
text input

intents

Figure 3.Amount of sensitive behaviors triggered by DroidBot and Monkey.

Figure 4. Speed of triggering sensitive behaviors of DroidBot and Monkey.
"default" means starting the app and doing nothing, "monkey" means using ADB
Monkey tool to interact with the app, and "random", "static", and "dynamic" are
policies of DroidBot.

State 1 State 2: Menu

State 3: Weather State 4: Ad

start app

press BACK

pres
s B

ACK

To
uc

h “
Wea

the
r”

press
BACK

Touch
Ad

X

X

X = already in UTG

!

! ＝ dangerous

(a) A UI transition graph example. (b) A UI state example to explain
new-state-first policy.

(c) A UI state example to explain
sensitive-state-first policy.

Figure 1.Architecture of DroidBot

The architecture of DroidBot is shown in Figure 1. DroidBot has five modules, Static
Analyzer and Runtime Monitor extract static and dynamic information from app and
device respectively. DroidBot Brain makes decisions based on the extracted information
and performs operations before app installation and during app execution, to trigger more
sensitive behaviors.
In EnvManager, we only consider permission information currently, and add dummy
documents to device based on the permissions requested by app.
In EventManager, we use a biased-random exploration strategy when send events. We
introduce a graph model of app which is called UI state transition graph (UTG). The
graph is built at runtime. Figure 2(a) shows an example of UTG.
Based on the graph model, we implemented two biased-random strategies:
1. New state first. When selecting event to send, DroidBot prefers the events which will
lead to a new UI state (aka. a state not in UTG). As shown in Figure 2(b), DroidBot
will not consider to touch theAd bar which is already in UTG.

2. Sensitive state first. As DroidBot is designed for malware analysis, it prefers sensitive
states (states where sensitive behaviors happen) to safe states. For example in Figure
2(c), DroidBot will click theActivate button rather than the Cancel button.

