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ABSTRACT

The increasing demand for artificial intelligence and cloud comput-
ing has led to skyrocketing energy consumption of data centers
(DCs). This paper focuses on tackling this energy challenge through
cooling control system optimization, which aims to ensure thermal
safety with minimal cooling energy consumption. Current industry
practice involves human operators, while many data-driven meth-
ods have also been proposed. However, human intervention often
results in unnecessary energy consumption, particularly in the
face of fluctuating server loads, whereas existing data-driven meth-
ods struggle to maintain thermal safety in practice. To overcome
these issues, we propose TESLA, a thermally safe, load-aware, and
energy-efficient cooling control system for data centers. TESLA
employs a novel data-driven framework that integrates domain
knowledge to predict DC temperature and cooling energy under
dynamic server load. Based on these predictions, a Bayesian opti-
mizer (BO) finds the energy-optimal settings for the cooling system
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at every control step. Besides cooling energy, BO’s optimization
objective also includes minimizing cooling interruption that causes
rapid temperature rise within the data center and leads to thermal
safety violations. We deploy TESLA on a real data-center testbed
and show that it achieves on average 10.1% cooling energy saving
relative to a fixed cooling system parameter setting and no thermal
safety violation relative to previous data-driven methods.
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1 INTRODUCTION

The exponential growth of artificial intelligence and cloud com-
puting has led to a monumental expansion of the data-center (DC)
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industry. However, this demand surge has led to a skyrocketing
energy consumption. It is projected that DC electricity usage could
triple or even quadruple by 2030 [12]. This substantial rise in energy
demand not only poses challenges to environmental sustainability
but also escalates operational costs for commercial DC providers.

Orthogonal to server-side optimizations, this paper considers
improving DC’s energy efficiency by optimizing its cooling system.
It entails adjusting the control settings of air-cooling units (ACUs)
in order to curb energy consumption under specified thermal safety
constraints. For companies that host their proprietary data centers,
cooling energy reduction that is thermally safe ensures servers’
optimal efficiency and prevents equipment damage [20]. As for DC
providers who offer their infrastructure to tenants who build their
private clouds, it brings immediate monetary benefits.

Currently, the most common control setting of ACUs is its inlet
temperature set-point [5, 42]. To reach a given set-point, ACUs uti-
lize proportional-integral-derivative (PID) control [27]. To choose
the set-point, current industry practice relies on human operators
who select a value based on experience, whereas many data-driven
methods [5, 8, 20, 23, 29, 35, 42, 43, 46] have also been proposed,
which learn how to compute the set-point under dynamic load from
historical data center traces.

Unfortunately, neither approach meets the goal of reducing DC’s
cooling energy within thermal safety. Human intervention cannot
provide optimal cooling energy as the server load is unknown to
the operator. A mismatch between cooling provisioning and server
load results in unnecessary cooling energy consumption.

Existing data-driven methods, although load-aware, struggle
to meet the thermal safety constraints due to overlooking the dy-
namics of ACU’s PID controller. They adopt cooling energy min-
imization under thermal safety constraints as their optimization
objective. This setup incentivizes ACU to operate at the boundary
of the constraints. As a result, cooling interruption tends to occur.
The set-point is higher than the actual inlet temperature such that
the PID controller thinks it has over-achieved its objective and cold
air is delivered at a reduced or zero rate. It is a phenomenon that
does not conform to DC cooling standards dictated by The Ameri-
can Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) [3]. When it happens, the temperature within the entire
data center rises rapidly due to heat generated by the servers being
removed at lower rates. Even if cold air starts to be delivered faster
again, it takes much longer to undo the increase (Section 2.2), mak-
ing previous data-driven methods unable to generate a set-point
that curbs the temperature rise in time.

To overcome these issues, we propose TESLA, a thermally safe,
load-aware, and energy-efficient cooling control system for data
centers. TESLA employs a novel, DC-customized, and data-driven
time-series modeling that predicts DC temperature and cooling
energy under dynamic server load over a finite time window. Based
on the predictions, TESLA uses a Bayesian optimizer (BO) that
solves for the energy-optimal set-point under thermal safety con-
straints while accounting for its modeling error. Unlike previous
data-driven methods which merely minimize cooling energy under
thermal safety constraints, TESLA also adds minimizing cooling
interruption in the optimization objective to prevent rapid tem-
perature rise that violates thermal safety. We deploy TESLA in a
real DC testbed (Section 4) with four racks and one ACU. We test
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TESLA’s cooling strategy under different load settings to demon-
strate TESLA’s effectiveness. Our contributions are summarized as
follows:

e We propose a novel data-driven time-series model to predict
DC temperature and ACU’s cooling energy given a specified
set-point.

e We propose a modeling-error-aware Bayesian optimizer (BO)
that solves for the energy-optimal set-point under thermal
safety constraints.

e We incorporate minimizing cooling interruption into BO’s
optimization objective in order to prevent rapid temperature
rise that violates thermal safety.

e We implement TESLA on a real DC testbed and achieve on
average 10.1% cooling energy saving relative to adopting a
fixed set-point and no thermal safety violation compared to
previous data-driven control methods.

Paper roadmap. The rest of the paper is organized as follows.
Section 2 discusses relevant background and challenges. Section 3
presents TESLA’s system design, which includes its modeling, set-
point optimization and execution. Section 4 discusses the deploy-
ment issue of TESLA. Section 5 presents our experimental results.
Section 6 analyzes TESLA in depth. Section 7 reviews the relevant
studies. Section 8 concludes this paper.

2 BACKGROUNDS AND CHALLENGES

We consider data centers with an air-cooling system as shown in
Figure 1. The cooling system consists of ACUs that supply cold air
to the servers for their temperature regulation. Air containment
is installed to improve cooling efficiency, resulting in cold and hot
aisle (labeled in the figure). We consider floor-level cooling [20] as
our thermal safety constraint which requires cold aisle temperature
to stay below a specified limit. In order to emulate real DCs, we
constructed a testbed consisting of 21 servers over four racks and
one ACU. The ACU is equipped with sensors that track its inlet
temperature for the PID control. Temperature sensors are also
installed on the racks to monitor the thermal state throughout the
entire data center. We collect servers’ resource utilization (CPU and
memory), servers’ and ACU’s instantaneous power consumption,
and temperature readings of both ACUs internal sensors and rack-
installed sensors. Section 4 details our testbed configuration.

Hot Aisl B ——

Air Containi

Cold Aisle

Figure 1: The type of data center considered in this work.

2.1 PID Control

An ACU utilizes proportional-integral-derivative (PID) control to
reach a specified set-point. A PID controller generates a control
signal to the ACU’s responsible component that delivers cold air
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(a compressor in the case of our testbed) based on the residual
error (the difference between the set-point and the actual inlet
temperature). The control signal consists of three terms: a term pro-
portional to the current residual error, an integral term accounting
for the accumulation of past residual errors, and a derivative term
accounting for the rate of change of residual errors.

Linearly combining these three terms, a PID controller calcu-
lates the control signal sent to the compressor indicating how fast
it should deliver cold air. Three terms’ respective coefficients de-
termine how fast the ACU can transition to a new set-point. When
the residual error is a large negative value (set-point lower than the
actual inlet temperature), the ACU’s power consumption is high (as
high as ~ 5kW on our testbed) as ACU is constantly sending cold
air, and when the residual error is a large positive value (set-point
higher than the actual inlet temperature), ACU power is low (as
low as ~ 100W), during which cold air is delivered at a reduced or
zero rate, i.e., cooling interruption.

2.2 Challenges

To achieve energy-efficient cooling control under thermal safety,
TESLA must overcome the following challenges.

Modeling DC thermodynamics and black-box instanta-
neous ACU power. Selecting an energy-optimal set-point under
dynamic load while providing thermal safety requires modeling
the impact of a set-point on ACU’s power and DC thermodynamics
which refers to how DC temperature at any location changes over
an infinite time window. However, it is not trivial to obtain such
modeling. DC’s thermodynamics are heavily influenced by server
power, which is often hidden from DC providers [20]. As for power
consumption, since ACUs typically come from third-party vendors,
the inner mechanism that governs their power consumption un-
der different set-points is unknown. Furthermore, ACU power can
have high variance even under constant set-points due to server
power fluctuations. Figure 2 shows that even though the set-point
is constant, the ACU power can still vary between 2kW and 3kW,
rendering it challenging to find a function between set-points and
instantaneous ACU power.
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Figure 2: ACU power time series with set-point fixed at 27°C.

PID control dynamics. When cooling interruption occurs in
Figure 3a during the first 10 minutes, it leads to a rapid temperature
increase of the cold aisle as shown in Figure 3b (~ 1°C per minute)
due to heat generated by the servers being removed at reduced
rates. Although ACU eventually starts delivering cold air at a faster
rate after ¢+ = 10 min as indicated by higher ACU power, it takes
twice as long to undo this increase (~ 0.5°C per minute). Since cold
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aisle temperature is not directly regulated by ACU’s PID controller,
this rise could occur at any cold aisle temperature, including when
it is close to the maximum limit, which does not give any buffer
room to preserve thermal safety.
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Figure 3: a) ACU power and b) max cold aisle temperature
under dynamic server load. Cooling interruption occurs dur-
ing the first 10 minutes.

Control time granularity. It is also difficult [5, 34, 36] config-
uring an optimal control time granularity, the period at which a
set-point is executed, in DC cooling control. If the granularity is
too coarse, the controller does not respond to overheating events in
time and a fine granularity creates frequent changes to the set-point,
which need to be avoided for industrial equipment like ACUs [36].
Moreover, the PID control also brings energy implications. Figure 4
gives an example. Figure 4a shows that at ¢ = 0 min, set-point is
set at ~ 28.5°C, which decreases to ~ 27.5°C and comes back to
~ 28.6°C at t = 2 min and ¢ = 4 min, respectively. Although 27.5°C
is never achieved, additional power has already been consumed,
as ACU’s power increases by almost ~ 30% from 2kW to 2.6kW
according to Figure 4b.
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Figure 4: a) Time series of ACU’s actual inlet temperature
and set-point and b) associated ACU power time series.
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3 TESLA SYSTEM DESIGN
3.1 Overview

Design considerations. TESLA is a data-driven cooling control
system for data centers, aiming to provide energy efficiency as
well as thermal safety. Given the modeling challenge mentioned in
Section 2.2, TESLA does not model how set-point changes ACU’s
instantaneous power or DC thermodynamics. Instead, TESLA’s
predictions are over a finite L-step horizon. It predicts how DC
temperature changes as well as the associated cooling energy under
a given set-point. Based on the predictions, it selects a set-point to
be executed at the current time step, which minimizes the predicted
cooling energy under the constraint that the predicted cold aisle
temperature captured by any sensor does not exceed the specified
limit. In addition to cooling energy minimization, the optimization
objective also includes cooling interruption minimization in order
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to curb the temperature rise risking thermal safety violation. Fi-
nally, due to the energy implication from set-point variations, the
optimizer considers all time steps within the L-step horizon share
the same set-point.

Overall workflow. These design considerations lead to the
workflow of TESLA shown in Figure 5. At any time step ¢, a Bayesian
optimizer (BO) computes a set-point for the interval t + 1tot + L
based on predictions of a DC time-series model. The predictions
include DC temperature and cooling energy, which are made based
on DC temperatures and server power from past L steps, specifically
the interval from t — L +1 to t. The set-point computed by BO is not
executed directly but passed through a smoothing buffer, which
aims to limit the maximum set-point variations made at adjacent
time steps. At time step t + 1, the L-step window shifts and the
DC time-series model makes predictions based on the time interval
fromt—-L+2tot+1.

DC Temperature and
Server Power from -— e
timet—L+1tot

DC Timeseries Model Predictions Optimizer Optimized
Model t+1tot+L P ACU Set-Point

DC Temperature and
Server Power from
timet—L+2tot+1

DC Timeseries | _ Model Predictions T Optimized
Model t+2t0 t+L+1 P ACU Set-Point

Smoothing Executed ACU Set-
Buffer Point at time ¢

Smoothing Executed ACU Set-
Buffer Point at time ¢ + 1

Figure 5: TESLA’s overall workflow. At time ¢, set-point opti-
mization is made for the next L steps using DC temperature
from the past L steps, which is repeated at ¢ + 1, t + 2, etc.

3.2 Data Center Time-Series Model

Design considerations. DC temperature is monitored by various
sensors installed along the racks. Accurate prediction of future
DC temperature relies on not only modeling the interdependence
among sensors but also including influence due to exogenous inputs.
In this case, there are two exogenous inputs, the heat-generation
rate within the data center due to server power and the heat-
removal rate indicated by the actual inlet temperature regulated by
ACU’s PID controller. However, including the impact of the exoge-
nous inputs requires their values at time step t + 1,t + 2,...,t + L,
which are not accessible at time step t. Consequently, they must be
predicted before computing future DC temperature, leading to the
following model architecture shown in Figure 6.

Model architecture. In summary, TESLA’s DC time-series model
uses four sub-modules to predict the DC temperature and cooling
energy. The first stage of TESLA’s DC timerseries model builds
an average server power (ASP) sub-module to predict the average
server power of the next L steps. The second stage uses an ACU sub-
module to predict ACU’s actual inlet air temperature based on the
given set-point and ASP’s outputs. The ASP and ACU sub-modules
give indications on how much heat is being generated and removed
from the data center. Lastly, a DC sensor (DCS) model predicts the
future DC temperature captured by sensors on different racks. As
for the cooling energy, we use a cooling energy-sub-module that
takes the predicted ACU inlet temperature and the ACU set-point as
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Past ACU Inlet Air Temperature
(NoL samples) _—lnputs
B Outputs
Past Cluster Power

Air Cooling Unit ACInlet Air
(bsamete) (ACU) Sub-Module Temperature Set-Point
l (L samples)
Predicted ACU Inlet o r——" S
Sub-Module (1 sample)

Air Temperature
(N, L samples)

Average Cluster Predicted
Power (ACP)  [— Cluster Power
Sub-module (L samples)

DC Sensor (DCS) :md‘““" bc
Sub-Module emperature
(N4 L samples)
Past DC Temperature
(NgL samples)

Figure 6: TESLA’s DC time-series modeling architecture,
where L is the prediction horizon, N, is the number of ACU
internal sensors, and N, is the number of sensors installed
along racks in the data center.

its inputs. The reason for this input-feature choice is that the cool-
ing energy is directly influenced by the PID controller, which serves
to reduce the residual error between ACU inlet temperature and
the given set-point as mentioned in Section 2.1. Each sub-module
uses linear regression with the direct strategy to map its inputs
to outputs, which has shown effectiveness in modeling DC tem-
perature [20] as well as general time-series forecasting tasks [45].
Specifically, the temperature at different steps within the L-step
horizon uses different regression weights and biases.

Average server power sub-module. Server power represents
the rate at which heat is generated within the data center. However,
each server’s power consumption could change abruptly, making
it difficult to predict due to unknown upper-level workloads. To
solve this problem, TESLA predicts the average power aggregated
over servers adjacent to the ACU based on DC layouts, as it is
less likely for multiple servers to change their power consumption
simultaneously than a single server [19].

Specifically, the average server power p;,; at the [ step from
the current time ¢, where I € {1,2,3, ..., L}, is computed as follows:

lth

L-1
et =B+ Y Bripi- @
=0

where p;j is the average server power at time step t — j and s
are the associated weights and bias.

Air-cooling unit sub-module. The actual inlet temperature
represents the rate at which heat is removed from the data center.
In addition, it also serves as the input for the following cooling
energy sub-module, as the residual error of ACU’s PID controller
determines the cooling energy consumption. Since ACU typically
uses multiple internal sensors to track its inlet temperature, we
need to account for the interdependence among them.

. . n
Assuming N, internal sensors, we compute the temperature a, ¢

t+l
captured by the nzh sensor at the next [t step, where ng € [Ng]

and [ € {1,2,3,..., L}, as follows:
Na—1L-1
e =y st e+ () Y] @
i=0 j=0

where the ys are the ACU sub-module’s weights and bias, s;,;
I step from current time ¢, p,,; is
i

t=j
is the i ACU sensor’s reading at time step t — j, respectively.
We use superscripts to represent sensor indices and subscripts

is the set-point at the next
the predicted average server power at the next jth step, and a
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to represent time indices. The final double summation term uses
weighted averaging to account for the contribution of past samples
of all ACU sensors.

Data center sensor sub-module. The aforementioned ASP and
ACU sub-modules provide the required exogenous inputs. Finally,
TESLA uses a DCS model to predict how temperature evolves at
different rack-installed sensors due to the exogenous inputs.

Given N; sensors, temperature d;lfl
at the next [t step, where ny € [Ny] and I € {1,2,3,...,L}, is
computed as follows:

captured by the n&h sensor

N,-1 Ng—-1L-1
4 _97d+elpt+l+( Z(; 0)a i+z) ( Z Zel”jkdf 1) ®)
= k=0 Jj=0

where the s are the DCS sub-module’s weights and b1as D1 is the

predicted average server power at the next I'! step, a +4,S are the

predicted ACU’s inlet temperature of the i ACU sensor at time
step t + 1, and df_j is the temperature of the k™ sensor at time step
t—j. Same as Equation (2), superscripts are used to represent sensor
indices, whereas subscripts represent time indices. The first single
summation term accounts for the contribution from predicted AC
inlet temperature, and the final double summation term accounts
for the contribution of past samples of all DC rack-installed sensors.

Cooling energy sub-module. As mentioned in Section 2.2,
directly modeling ACU’s instantaneous power is ill-advised due to
its high variance even under constant set-point and server power.
As aresult, we model the cooling energy over the prediction horizon.
Specifically, we compute the total energy consumed by the ACU
over L steps using the observed instantaneous power and build a
cooling energy sub-module that maps the corresponding set-point
to the computed energy value.

Given ACU’s instantaneous power trace {pACU L

| between

time step ¢ + 1 and t + L, the energy E- 41 Spent durlng this time
interval ends at time ¢ +1 is obtained using numerical integration in
kilowatt-hour. Next, we find a mapping that connects the set-point
to E{‘H. Since the PID controller operates based on the difference
between the set-point and ACU’s inlet temperature, we use all

of their samples over the time interval as the input features. The

sub-module computes Ef_'_l as follows:
L N,-1 L
Ef+1 =¢p+ (Z ¢f5t+i) + ( Z Z ¢na,1 t+1) ©
i=1 ng=0 i=

where the ¢s are the weights and bias, s;4; is the set-point value
at time step ¢ + i with i € {1,2,...,.L}, and a::“_l. is the ACU’s inlet
temperature captured by the nfzh sensor in a total of N, sensors.
Training methodology and loss function. Training TESLA’s
DC time-series model requires finding the weights and biases for
each sub-module, i.e., the fs, ys, 0s, and ¢s from historical data.
Since three of the four sub-modules, ACU, DCS, and the cooling en-
ergy sub-modules, require predicted values as their inputs, training
them iteratively in an end-to-end manner is challenging because
the predicted values are random at the beginning of the training.
Instead, the sub-modules’ weights and biases are retrieved sepa-
rately. The ACU and DCS models use true ACU inlet temperature
and average server power to predict their respective outputs a’ t+l
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andd,; nd .Each target value has its own dataset. All of them use mean
squared loss (MSE) as the loss function. It results in (1+N,+Ny)L re-
gression problems according to Figure 6, whose analytical solutions
can be obtained directly [25].

Choosing regularization strength. We use the standard L2 reg-
ularization to penalize the norm of the weights of the sub-modules,
where ag, ay, ag, and ag control the regularization strength for
each sub-module, respectively. L2 is adopted since L1 regularization
would have promoted sparse weights, discounting contributions
from most input features. Since ACU, DCS, and the cooling energy
sub-modules see predicted values during inference instead of true
ones, we account for this discrepancy by setting ay, ag, and ay to
1, turning the regression problems in these sub-modules into ridge
regressions instead of adopting the ordinary least square (OLS)
solution [9].

3.3 Set-Point Optimization

Design considerations. The time-series model establishes how a
given set-point influences DC temperature at different locations in
the data center over the finite time horizon. Based on the model’s
predictions, TESLA uses an optimizer to find the energy-optimal
set-point without violating thermal safety constraints. However,
the optimizer needs to be aware of the modeling error of the DC
time-series model, even though we have made efforts to reduce
its generalization error by incorporating the impact of exogenous
inputs. Generalization error is only an averaged metric. Therefore,
large deviations can still occur. When they happen, subsequent
set-point optimization is conducted based on wrongful predictions,
making the data center potentially vulnerable to thermal safety
violations and sub-optimal energy savings.

Formulating the optimization problem. Consequently, TESLA
forms the following optimization problem for interval ¢ + 1 to t + L.

. L
argming, =~ o TOf 1 (St415 s St4L)
subject to TC{“H(SHI, v SpaL) S0
L L
TO[+1 (St41s s St4L) = Ot+1 +e€ 5)
L
TCH.] (st+la .. st+L) = t+1 +n
L
St+1 = e =S4l = Siq
Smin < St+1 < Smax
where $z41, ..., Sz4, is the set- pomt sequence. The optimizer maxi-

mizes an objective function TOL | that includes the true cooling en-

t+1
ergy subject to a constraint function TCL +1 that indicates true ther-
mal safety violation if it is positive. However, only their predicted
version OtLJrl and CtL+1 can be obtained directly through the DC
time-series model, where € and 7 are the modeling error. In order to
avoid the energy implication from set-point variations as mentioned
in Section 2.2, TESLA optimizer considers all time steps within the
L-step horizon share the same set-point, i.e., St+1 = ... = Sp4p = StL+1'
Smin and Smax are the minimum and maximum set-point values,
respectively, achievable by the ACU’s PID controller given in the
ACU’s specification.
Optimization objective. OL o)
term is the cooling energy estimated by the cooling energy sub-
module in the DC time-series model, while the second term reflects

consists of two terms. The first
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cooling interruption. We include it in the optimization objective
as it leads to rapid temperature rise in the data center due to heat
being removed at reduced or zero rate. Additionally, according to
DC cooling standards dictated by The American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) [3, 30], the
duration of cooling interruption in data centers is limited based on
their availability specifications. Although cooling interruption pro-
vides an energy-saving incentive, it conflicts with this requirement.

To compute cooling interruption DtL+1’ we use the residual error
of ACU’s PID controller, i.e., the difference between the set-point
and the actual inlet temperature over the time interval t + 1 to t + L
as a proxy:

L
Dfyy = ) Utj ©)
Jj=1

where Uy, j is the residual error at time ¢ + j given by:
St+j — avgNu(a?j:j) if s —avgy, (a;:‘_’j) > K @
Otherwise

where s¢.j is the set-point at time ¢+ j, avgy, denotes the averag-
ing operation across N; ACU sensors, and a’:f g is the inlet temper-
ature of sensor n, at time ¢ + j. k is a positive number that controls
how much cooling interruption is penalized. Setting x = 0 does not
allow any interruption. The DC time-series model computes the
objective function O{“H as the summation of the aforementioned
two components.

L _ L L
Or1 = iy + Dy ®)
where EtL+1 and DtL+1 are given by Equation 4 and Equation 6, re-

spectively.

Constraint. Given the floor-level cooling as our thermal safety
constraint that the sensors monitoring the cold aisle must not ex-
ceed a given temperature, the constraint CtLJr1 computed by DC
time-series model is computed as:

L
Ct+1 = MaXp t+j (d;lf]) - dallowed (9)

where j € {1,2,...,L} and nj belongs to the index set I.oq which
denotes the sensors installed in the cold aisle. d;’fj is the corre-

tL+1 computes how far the

maximum temperature captured at the next L steps by the cold aisle
sensors is from the allowed temperature dyjjgwed. If Cfﬂ is negative,

it means that the constraint is not breached and is so otherwise.

sponding sensor reading at time t + j. C

Bootstrapped
predictions

sampled Noisy

Customized Objective Values

Objective
Function

Computed
Set-point

Online Model-Error-Aware Smoothing
Vonftor Bayesian Optimizer Buffer

DC Timeseries Model

Outputs (Section 3.2)

(L+L+NL+Ng L)
samples

—{ Prediction Error

Buffer
Constraint Average

Bootstrapped Function

Sampled Noisy

Constraint Values Acu
PID Controller

Figure 7: Overview of how TESLA computes and executes the
optimal set-point based on the DC time-series model from
Section 3.2.
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Optimizer workflow. To solve the constrained optimization
problem (5), we use the workflow shown in Figure 7 while ac-
counting the DC timerseries modeling error. We choose Bayesian
optimization [13] as our optimizer backbone, which has been ef-
fective in optimizing low-dimensional black-box functions such as
the mappings from Sfﬂ to TOfJrl and TC{“H, respectively. Based on
the outputs of the DC time-series model described in Section 3.2,
TESLA’s optimizer samples values from distributions of the ob-
jective and constraint functions. It uses a modeling-error-aware
Bayesian optimizer to find the optimal feasible set-point. To con-
struct the distributions of the objective and constraint functions,
uncertainty estimation of the objective and constraint is needed.
TESLA uses an online prediction error monitor that keeps track
of the prediction error made by the DC time-series model within
the past day, which is a typical period where the data center load
rises and falls [10]. The uncertainty estimates are obtained from the
monitor using bootstrapping [16, 39]. After the Bayesian optimizer
computes a set-point, it is sent to a smoothing buffer whose output
is finally executed by ACU’s PID controller.

Bayesian optimization primer. Conventional BO [13] relies
on two components. The first one is a surrogate model that maps
Sfﬂ to TOILH. Based on observed (Sfﬂ, TO{“H) pairs, the model
fits a maximal a-posterior estimate of the underlying distribution.
Typically, a Gaussian process (GP) is used in this process. TC;;1 is
usually added to TOtLJrl during the fitting. BO proceeds iteratively to

find set-point that yields better TO{‘_'_1 using an acquisition function.

Conventional BO thus requires TOfJr1 and TCf+1 to be accessible

for any set-point. Unfortunately, in this case, Ofﬂ and Cfﬂ are
available, which is why we resort to modeling-error-aware BO.
Surrogate model. We choose GP to create the distributions of
objective and constraint functions. Unlike conventional BO where
the objective and the constraint are shared the same GP, we have

separate fixed-noise GPs that fit TO{“Jrl and TctL+1 using O{‘H and

CtLJrl for fast and accurate convergence [49]. Matern (5/2) [37] is
used as the covariance kernel.

Uncertainty estimation using bootstrapping. The fixed-noise
GP requires uncertainty estimation as its input. To achieve this goal,
TESLA uses a prediction error monitor that keeps track of the past
prediction errors made by TESLA’s DC time-series modeling. For
example, when deciding at time ¢ for time interval t + 1 to ¢t + L,
prediction errors up till time ¢ have become available. Bootstrap-
ping [16, 39] allows TESLA to repeatedly sample from the observed
prediction errors N, times. to create N, versions of O{“H and Cfﬂ
under the same set-point from which the variance of the prediction
error can be computed.

Acquisition function. Usually, the expected improvement (EI)
acquisition function [40] is adopted to find the energy-optimal set-
point under the thermal safety constraint. However, it assumes
accessible TOtL+1 and does not handle hard constraints in the con-
strained optimization problem 5. To address this issue, TESLA’s
optimizer adopts constrained noisy expected improvement (NEI)
[21] with quasi-Monte Carlo integration (QMC) as its acquisition
function, which assumes the observed objective and constraint val-
ues are not perfect and can process hard constraints. Finally, it is
still possible that none of the set-points considered satisfies the
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constraint, indicating that the constraint is close to being breached.
Therefore, TESLA selects Spyin and it will re-calibrate itself later.

3.4 Set-Point Execution

After the set-point is computed by the optimizer, it requires post-
processing to be sent to the ACU’s PID controller for execution.
The reason is that set-point transitions take time, which varies
based on server power and the previous set-point. As a result,
executing set-points periodically is bound to have some of set-
points be executed when the ACU has not stabilized around the
previous ones yet. This type of execution risks additional energy
consumption as demonstrated in Section 2.2. To avoid such cases,
we add a smoothing buffer of length N that stores the set-points
computed by TESLA’s optimizer. The set-point that finally sent to
the ACU’s PID controller is the running average of values stored
in the smoothing buffer. The buffer acts as a low-pass filter that
removes the high-frequency variations in the computed set-points
and thus alleviates unnecessary power peaks.

4 IMPLEMENTATION

Testbed. Our testbed consists of 21 servers installed on four racks.
The servers communicate over one networking switch. Ny = 35
sensors are installed on racks to monitor DC temperature, 11 of
which monitor the temperature of the cold aisle. Air containment
is installed that separates the cold aisle from the hot aisle. The ACU
is manufactured by [11], which has N; = 2 sensors to track its
inlet temperature for PID control. A Kubernetes [18] cluster is built
using these servers for workload orchestration. We adopt Influxdb
plus Telegraf [31] as our observability solution. Each server runs
a Telegraf process that collects metrics including server power,
CPU utilization, and memory utilization. Metrics related to ACU
and DC sensors, specifically temperature data, are also collected
using Telegraf with the Modbus protocol. All data is ported into
a management server outside the cluster running Influxdb. The
details of the software and hardware are listed in Table 1.

Table 1: Testbed details.

Testbed Hardware
Servers 21
112-core Xeon® Gold 6330 (11 servers)
CPU
88-core Xeon® E5-2699 (10 servers)
ACU Evicool [11] XR023A
Max allowable set-point Spmax 35°C
Min allowable set-point Spin 20°C
Number of Cold Aisle Sensors 11
Number of Total Sensors Ny 35
Number of ACU Sensors N, 2
Testbed Software
Architecture 1 Master + 20 Slaves
Workload Orchestration Kubernetes 1.25.12
Observability InfluxDB 2.7.0 + Telegraf 1.29.1
Operating System CentOS Stream 9

Workload Generation. We use the controller introduced by
Gaetano [14] to create a steady CPU load at any given duration on
a single server. The controller takes the target CPU cores, desired
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load level, and duration as its inputs. In order to create varying CPU
load in the entire cluster, we deploy the controller to our testbed
using the Job resource of Kubernetes [17].

TESLA. We trained the DC time-series model using Skforecast
[2] with Scikit-learn [33]. The prediction error monitor and the
bootstrapping sampling are PyTorch-based [28]. We implement the
Bayesian optimizer in BoTorch [4], which uses the FixedNoiseGP
class that calls GPyTorch [15] to implement the Gaussian processes.
Our main function is implemented using two Python processes, a
producer and a consumer that communicate over a message queue.
One process periodically pulls testbed information, e.g., CPU utiliza-
tion, server power, and temperature from InfluxDB and pushes it
onto the message queue. The consumer process pulls the InfluxDB
data from the queue and runs it through TESLA according to Fig-
ure 5. When the smoothing buffer outputs a set-point ready for
execution, TESLA writes the value in the register of ACU’s PID
controller through the Modbus protocol.

5 EVALUATION

5.1 Setup

Server load settings. We adjust the desired load level of Gae-
tano [14]’s controller at 1-minute granularity to emulate a typical
diurnal pattern seen in DCs, measured in average CPU utilization.
To expedite each experiment, the testing period is set to 12 hours,
i.e., the server load rises and falls over 12 hours. We consider three
diurnal load settings in order to test TESLA’s performance under
dynamic server power. The load settings are selected based on
cluster data collected from production clusters in Alibaba [10].

(1) Idle: the controller is not activated and no load is created in
the testbed.

(2) Medium load: the average CPU utilization of the entire testbed
over the 12-hour period is 20%.

(3) High load: the average CPU utilization of the entire testbed
over the 12-hour period is 40%.

Datasets, preprocessing and metrics. For every 12 hours, we
randomly pick a server load setting. During this period, the set-point
is swept from 20°C to 35°C, which changes 0.5°C every 5 minutes.
We repeat this operation for 1 month and collect the testbed traces
in order to build our training dataset. The testing dataset is built
using traces from another two weeks. All data from InfluxDB are
normalized to the range of 0 and 1 using min-max normalization
as the preprocessing step. We use mean absolute percentage error
(MAPE) as the accuracy metric for modeling, which is the absolute
difference between the predicted value and the ground truth divided
by the ground truth. For the end-to-end performance, we compute
the cooling energy over the testing period and the period during
which the thermal safety constraint is breached.

Hyperparameters. We list the relevant hyperparameter values
in Table 2 along with their symbols and meanings. @y, ag, and
ag are chosen to be nonzero since these model inputs take true
values during training and predicted versions during inference. The
regularization choice is to prevent large output swings due to input
errors from predictions. The limit of cold aisle temperature d,jjgwed
of 22°C is chosen according to DC cooling standards of ASHRAE
[3], which is also used to evaluate TESLA’s and other methods’
thermal safety violation.
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Table 2: Relevant hyperparameters.

. Value
Symbol Meaning and Unit
ag Regularization for ASP sub-module 0
ay Regularization for ACU sub-module 1
ag Regularization for DCS sub-module 1
o Regularization for cooling energy 1
¢ sub-module
N Number of bootstrapping samples 500
N Size of the smoothing buffer 5
dallowed Limit of cold aisle temperature 22°C
, Threshold for penalizing ACU’s cooling 0.5°C
interruption
L Prediction horizon 20
At Sampling period 1 min

5.2 Modeling Results

DC temperature modeling. We compare TESLA’s time-series
model with models used by Lazic et al. [20] from Google and Wang
et al. [42] to evaluate TESLA’s performance in terms of DC temper-
ature prediction. They are state-of-the-art works that model DC
temperature for controlling DC’s cooling system. Lazic et al. [20]
uses linear regression with ordinary least square [9], whereas Wang
et al. [42] uses multi-layer perceptron (MLP) [38]. Their MAPEs
are listed in Table 3, which shows that TESLA outperforms these
alternatives. The reason for this performance gain is that these
baselines generate their outputs recursively, unlike TESLA that
produces its outputs at each time step in parallel. Moreover, these
baselines model all DC temperature in a data center collectively
with the cooling demand (server power) and provisioning (ACU’s
inlet temperature), whereas TESLA predicts their values first in
order to account for their dynamicity.

Cooling energy modeling. Table 4 benchmarks TESLA’s DC
timeseires model in terms of predicting the cooling energy. We
consider the following non-linear models as baselines: MLP [42],
XGBoost [7], and Random Forest [26]. The table shows that TESLA’s
cooling energy sub-module achieves the lowest MAPE relative to
the other three alternatives.

Table 3: DC temperature MAPE.

Prediction TESLA Lazic Wang et al.
Error (Ours) et al. [20] [42]
MAPE(%)  3.52 5.52 10.73

Table 4: Cooling energy MAPE.

Prediction TESLA MLP XGBoost Random
Error (Ours) [38] [7] Forest [26]
MAPE(%) 7.90 14.33 13.41 15.11

5.3 End-to-End Performance

We evaluate TESLA’s end-to-end performance under the aforemen-
tioned three load settings using: the cooling energy (CE) spent
during a 12-hour testing period and the amount of time of thermal
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safety violation (TSV). Three other alternatives are considered: a
static policy where the set-point for the ACU’s inlet temperature
is fixed at 23°C, the DC cooling control method proposed by Lazic
et al. [20] from Google based on model predictive control [1], and
TSRL [8], a state-of-the-art offline reinforcement learning method.
Lazic et al. [20] relies on an autoregressive linear modeling for
DC temperature prediction, based on which a gradient-descent
optimizer chooses the highest set-point such that the predicted
maximum cold aisle temperature stays below the specified 22°C
limit. TSRL [8], on the contrary, directly outputs the set-point deci-
sion without modeling DC temperature or cooling energy. It uses
cooling energy saving as its reward and thermal safety violation as
its cost. The learning process tries to maximize the reward while
minimizing the cost based on historical DC traces. We trained TSRL
[8] with the same training set used to train TESLA’s DC time-series
model.

The end-to-end results are shown in Table 5. We also include the
duration of cooling interruption (CI) indicated by ACU power below
100W in our testbed. The table shows that TESLA outperforms the
fixed 23°C policy with 5.24% — 15.3% (10.1% on average) of cooling
energy saving under no thermal safety violation. The higher the
load is, the more cooling energy TESLA saves (15.3% at the high
load setting). The source of TESLA’s energy savings is analyzed
in Section 6.2. Although Lazic et al. [20] and TSRL [8] save more
cooling energy compared to TESLA, the table shows that they can
not provide thermal safety guarantee under all load settings due to
extensive cooling interruption. Lazic et al. [20] and TSRL [8] cause
at least 16.9% TSV, while TESLA does not have any violation. We
analyze why Lazic et al. [20] and TSRL [8] cannot provide such
guarantee in Section 6.3.

Table 5: End-to-end performance benchmark, including cool-
ing energy (CE) along with percentage savings, thermal safety
violation (TSV), and cooling interruption (CI) under idle,
medium load, and high load settings. The relative CE saving
is calculated with respect to the fixed 23°C policy.

Load- Metric Fix TESLA Lazic TSRL
Setting 23°C  (Ours) et al. [20] (8]
CE (kWh) 24.8 23.5 11.9 12.6

CE Saving (%) 0 5.24 52.0 492

Idle TSV (%) 0 0 24.0 40.4
CI (%) 1.00 2.00 34.4 48.6

CE (kWh) 264 238 19.4 18.6

CE Saving (%) 0 9.84 27.6 30.6

Medium TSV (%) 0 0 22.1 23.2
CI (%) 1.00 2.00 32.4 21.0

CE (kWh) 28.7 243 227 20.2

CESaving (%) 0 15.3 26.4 42.1

High TSV (%) 0 0 25.0 16.9
CI (%) 1.00 2.00 35.2 17.5

6 DISCUSSION
6.1 How TESLA Computes its Optimal Set-Point

We use two different time instants to illustrate how TESLA com-
putes its optimal set-point at any time instant. Figure 8a shows
the average server power over the 12-hour testing period under
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Figure 8: An overview of how TESLA computes its optimal
set-point at different time instants.

medium load setting and Figure 8b shows the mean objective and
constraint functions from TESLA’s Gaussian processes. At t = 3.9h,
the servers see a high average power with each machine work-
ing at 0.365kW shown by Figure 8a. At this time, TESLA finds the
set-points which lead to negative constraint function values first,
indicating thermal safety would not be breached for the next L steps,
which is any set-point below 34°C. Next, it selects the one which
maximizes the objective function, which is the peak at 26.8°C. The
set-point is then passed to the smoothing buffer whose output gets
executed and affects the DC temperature evolution, which leads
to new objective and constraint functions at t = 7.2h. At this time
instant, the aforementioned steps are repeated, which lead to an
optimized set-point of 23.4°C that passed to the smoothing buffer.
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Figure 9: TESLA’s a) set-point and actual inlet temperature
trace in addition to b) its ACU power.
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Figure 10: The a) set-point and actual inlet temperature trace
in addition to b) the associated ACU power when the set-
point is fixed at 23°C.

6.2 Energy Saving Analysis

We compare TESLA’s computed set-point and associated ACU
power with those of the fixed 23°C-policy to analyze how TESLA
saves cooling energy. Figure 9 shows TESLA’s computed set-point
and actual inlet temperature trace as well as its ACU instantaneous
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power, while Figure 10 shows those of the fixed 23°C-policy. Al-
though physical intuition indicates that a lower server power only
needs a higher set-point, the figure shows that it is not the case
for PID-enabled ACUs. When the server power is low, it becomes
easier to achieve a lower inlet temperature. Having a set-point sig-
nificantly higher than the actual inlet temperature risks cooling
interruption. On the other hand, when the server power is high, the
actual inlet temperature increases as well. Using a set-point signifi-
cantly lower than the actual inlet temperature incurs more cooling
energy. Figure 10 shows a large residual error between set-point
and the actual inlet temperature, indicating it is difficult for the PID
controller to achieve the set-point. As a result, the ACU constantly
spends ~ 2.5kW during the first four hours, whereas the ACU’s in-
stantaneous power stays at ~ 2kW in the case of TESLA. Therefore,
TESLA saves cooling energy by selecting the highest set-point
such that cooling interruption is minimized. Since there is
barely any time (~ 1%) where cooling is interrupted, it becomes
less likely for TESLA to violate the thermal safety constraints.

6.3 Thermal Safety Analysis

We analyze the computed set-point trace and max cold aisle tem-
perature of Lazic et al. [20] and those of TSRL [8] to show why
they cannot provide thermal safety guarantee. Figure 11 shows the
set-point, actual inlet temperature, and max cold aisle temperature
for Lazic et al. [20]. In contrast to TESLA, which selects the highest
set-point that minimizes cooling interruption, Lazic et al. [20] con-
siders only cooling energy as its optimization objective. This setup
makes it select the highest set-point as long as the constraint
function is negative, promoting the ACU to operate at the bound-
ary of the cold aisle limit. As a result, cooling interruption happens
which leads to rapid temperature increase in the cold aisle that
crosses the cold aisle limit. When Lazic et al. [20] tries to compute
the set-point near these time instants, no feasible set-point can be
found, which triggers a backup strategy of selecting Sy, = 20°C as
shown in Figure 11a. However, since the ACU operates < 4°C from
the 22°C limit, the rapid rise of cold aisle temperature (~ 1°C per
minute shown by Figure 3b does not give Lazic et al. [20] enough
margin to curb the rise in time, leading to frequent overshoot of
the cold aisle temperature limit as shown in Figure 11b.
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Figure 11: Lazic et al. [20]’s a) set-point and actual inlet tem-
perature trace in addition to b) its max cold aisle temperature.

Figure 12 shows the set-point, actual inlet temperature, and max
cold aisle temperature for TSRL [8]. Like Lazic et al. [20], TSRL [8]
also promotes ACU to operate at the boundary of the cold aisle limit,
as it considers only cooling energy as its optimization objective. As
indicated in Figure 12b, the set-point is selected such that the max
cold aisle temperature gradually approaches 22°C cold aisle limit.
However, since it also does not include cooling interruption into its
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consideration, Figure 12b shows that it cannot curb the resultant
temperature rise in time, leading to frequent overshoot of the cold
aisle temperature limit similar to Lazic et al. [20].
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7 RELATED WORK

Cooling control for data centers. The first requirement of DC
cooling control is the collection of DC temperature data. RACNet
[24] pioneers the use of wireless sensors to monitor DC tempera-
tures among other things to enable fine-grained modeling of DC
dynamics for effective cooling control and optimization. The ma-
turity of DC temperature monitoring motivates recent works to
adopt a data-driven approach, which consists of two directions:
deep reinforcement learning (DRL) [5, 8, 23, 29, 35, 42, 43, 46] and
model predictive control (MPC) [20]. DRL relies on agents to learn a
control policy through interactions with the DC that maps currently
observed DC temperature to a set-point. Initially, online model-free
DRL methods [23, 29, 35] adopt direct agent-environment inter-
actions. Due to drawbacks of learning inefficiency and thermal
safety concerns, subsequent methods [5, 8, 42, 43, 46] consider the
model-based alternative, in which a model tracks DC temperature
and guides the learning process of the control policy. They use
energy saving as rewards and thermal safety violations as costs in
order to provide energy optimality while preserving thermal safety.
MPC [20], on the other hand, chooses the energy-optimal set-point
under thermal safety through explicit modeling of DC temperature
and cooling energy. However, existing DRL methods do not provide
interpretability for their decisions, as the mapping between DC
temperature and the optimized set-point is encapsulated by deep
neural networks. On the contrary, TESLA’s decision process can
be visualized at every control step through figures like Figure 8b.
In addition, existing DRL methods are evaluated using simulators,
whereas TESLA is deployed in a real DC environment. Finally,
neither existing DRL nor MPC methods for DC cooling control
account for the dynamics of ACU’s PID controller.

Modeling DC temperature and cooling energy. The end-to-
end performance of DC cooling control depends on the prediction
accuracy of DC temperature and cooling energy. To achieve this
goal, it is necessary to model not only the temporal relation of each
sensor but also the sensors’ interdependence. Both transformers
and linear models have shown potentials due to their accuracy
for a variety of multivariate time series [32, 44, 45, 48]. For the DC
scenario specifically, Lazic et al. [20] relies on a single autoregressive
linear model. In contrast, TESLA adopts a direct strategy, using
a group of linear models that explicitly captures the impact of
exogenous inputs, i.e., server power and ACU inlet temperature, in
order to provide more accurate predictions.
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Server power control in data centers. Besides energy-efficient
cooling control, many works also focus on server power control
since servers constitute the primary contributors of energy con-
sumption in data centers. Chen et al. [6] develops the first energy-
aware dynamic server provisioning for stateful services, demon-
strating significant energy saving for a major Microsoft cloud
service. At the infrastructure level, Li et al. [22] adopts a power-
oversubscription approach where more servers are subscribed to a
single rack than its allowed capacity. Power capping is employed to
prevent overload in a throughput-optimized and quality-of-service-
aware fashion. Zhang et al. [47] and Stojkovic et al. [41] tackle
the power control problem from the perspective of serverless com-
puting, a cloud computing paradigm that starts to gain popularity
among different businesses. These methods complement TESLA in
order to provide a comprehensive solution for energy-efficient data
centers.

8 CONCLUSION

This paper proposes TESLA, a thermally safe, load-aware, and
energy-efficient cooling control system for data centers. TESLA
uses data-driven modeling to predict DC temperature and cooling
energy based on which the set-point is optimized for PID-enabled
ACU:s in existing DCs. Relative to a fixed policy, TESLA provides
energy efficiency by selecting set-points that match provisioned
cooling resources with server loads. Compared to prior data-driven
methods, TESLA provides thermal safety by explicitly considering
rapid temperature rise due to the control dynamics of ACU’s PID
controller. Since the decision-making process is decoupled into two
separate stages: modeling and optimization, DC operators can gain
insights of why a particular set-point is selected. Moreover, since
the set-point optimization takes place at every control step, TESLA
can adjust the thermal safety constraints during deployment with-
out retraining, while existing DRL methods have to retrain their
agents. TESLA improves DC’s energy efficiency by reducing the
energy of the cooling system relative to that of servers. One future
direction is to optimize DC’s total energy consumption by integrat-
ing TESLA with server-side optimizations such as energy-aware
workload scheduling. We leave it as our next step.
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