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ABSTRACT KEYWORDS
Backdoor attack is a major threat to deep learning systems in safety- Backdoor attack, Neural Networks, Adversarial Patch

critical scenarios, which aims to trigger misbehavior of neural
network models under attacker-controlled conditions. However,
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we show that backdoor attacks can be achieved without any model

modification. Instead of injecting backdoor logic into the training 1 INTRODUCTION

data or the model, we propose to place a carefully-designed patch Deep Neural Networks (DNNs) are widely used in many security-
(namely backdoor patch) in front of the camera, which is fed into the critical edge systems such as autonomous driving [8], face authen-
model together with the input images. The patch can be trained to tication [42] and medical diagnosis [31, 35]. While bringing great
behave normally at most of the time, while producing wrong predic- convenience in many applications, the security issues of deep learn-
tion when the input image contains an attacker-controlled trigger ing (DL) are also gaining extensive attention.
object. Our main techniques include an effective training method to It is widely known that DNN is vulnerable to many types of
generate the backdoor patch and a digital-physical transformation attacks, and the backdoor attack is a major one of them. Most back-
modeling method to enhance the feasibility of the patch in real de- door attack approaches conduct the attack by training the victim
ployments. Extensive experiments show that PatchBackdoor can be model with poisoned datasets [13, 28]. The trained model will have
applied to common deep learning models (VGG, MobileNet, ResNet) a high benign accuracy when normal test samples are predicted,
with an attack success rate of 93% to 99% on classification tasks. while the model will give wrong predictions when certain attacker-
Moreover, we implement PatchBackdoor in real-world scenarios controlled triggers are present. Some other attackers conduct the
and show that the attack is still threatening. attack by directly modifying the model structures and/or weights[6],
which usually happens in third-party machine learning platforms
CCS CONCEPTS where users outsource the training or serving to untrusted ser-

« Security and privacy — Malware and its mitigation; - Com- vice providers. The attackers can modify their models to inject

puting methodologies — Computer vision. backdoors before the models are actually deployed.
A primary limitation of the backdoor attack is the need to modify

the model, which could be challenging in most security-critical
*Corresponding author. scenarios. For instance, most autonomous driving companies use
self-collected and carefully-filtered datasets for training and will
not outsource the training to cloud service either. When being
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by attaching a constant input patch, which is feasible since many
vision applications have an unchanged foreground/background.
Such an attack is dangerous because (i) it is difficult for model
developers to avoid such an attack since the attack happens after
the model is securely deployed and (ii) attackers can flexibly control
the backdoor logic to implement practical attacks.

The idea of backdooring deep neural networks with an input
patch is closely related to adversarial patch attacks [2, 13], which
have been extensively studied in the literature. However, adver-
sarial patch attacks aim to directly produce a wrong prediction if
a carefully-designed patch is presented in the input. Instead, our
goal is to inject a hidden backdoor logic with a constant patch in
the foreground or background. Our method is a novel connection
between the backdoor and adversarial patch attacks.

Our approach includes two main techniques. First, we adopt a
distillation-style training method to generate the backdoor patch
without labeled training data. Specifically, we design a training
objective that jointly maximizes the patch stealthiness (i.e., mimic-
ing the benign model behavior on normal inputs) and the attack
effectiveness (i.e., producing misbehavior on trigger conditions).

Second, to enhance the attack effectiveness in the physical world,
we propose to model digital-physical visual shift with differen-
tiable transformations (including a shape transformation and a
color transformation), so that the digitally-trained backdoor patch
can be directly adopted in the physical world.

To evaluate our approach, we perform experiments on three
datasets (CIFAR10 [24], Imagenette [18], Caltech101 [9]) and three
models (VGG[40], ResNet[16], MobileNet[39]). The results demon-
strate that our attack is robust under different situations with a high
attack success rate of 93% to 99%. Meanwhile, our attack is stealthy,
since the backdoor patch does not affect the benign accuracy of the
victim model, and can hardly be detected with out-of-distribution
(OOD) detectors. We also show that our attack is effective at dif-
ferent levels of over-parameterization by testing it with different
pruning ratios (0%, 30%, 60%, 90%). By deploying the attack to the
physical world, we demonstrate the feasibility of our attack in
real-world scenarios.

This paper has the following research contributions:

o To the best of our knowledge, this is the first backdoor attack
against neural networks that does not require any modifica-
tion on the victim models.

e We design a training scheme for the attack, which can gen-
erate an effective backdoor patch efficiently with minimal
data requirements.

e We introduce a digital-physical transformation modeling
method that can improve the attack effectiveness in the real-
world deployment.

e We conduct thorough evaluations of the effectiveness and
anti-detection abilities of our attack.

The source code is at https://github.com/XaiverYuan/PatchBackdoor

2 BACKGROUND AND MOTIVATION
2.1 Backdoor Attack against DNN

A deep neural network (DNN) can be viewed as a function f that
maps an input x to a prediction y. Typically, a DNN is trained to
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maximize the following probability:

P(f(x) = §) (1)

where f is the DNN, x is the image to be classified, § is the ground
truth label for the corresponding input x.

The backdoor attack against a DNN aims to inject a hidden logic
into the model, so that the model behaves normally on clean input
data, while producing wrong predictions on certain conditions (e.g.,
the input image contains an attacker-controlled trigger). Formally,
the objective of backdoor attacker is to turn the victim model f to
amodel f’ that maximizes following two probabilities:

P(f"(x) = 1), P(f’(x & trigger) = y;) @)

where x @ trigger is the image with the trigger, y; is the target label
for corresponding x.

Backdoor attack is difficult to defend against since the attacker-
controlled trigger can be arbitrary and unknown to the users. For
example, the backdoor trigger could be invisible to humans if the
attackers limit the perturbation boundary [12]. The trigger could
also be as small as only one pixel [41]. Defending against backdoor
attacks typically requires analyzing the poisoned datasets [3] and/or
tuning/retraining the victim model [32].

A significant limitation of existing backdoor attack approaches
is the need to modify the victim model. Specifically, to inject a
backdoor, the attacker needs to insert malicious data samples into
the training dataset or alter the model. Since the training data and
the model are usually properly protected by the developers, the
applicable scenarios of existing backdoor attacks are limited.

Therefore, we are motivated to investigate whether it is feasible
to achieve backdoor attack without changing the model and the
training datasets. If so, it could pose a significant threat to the
security-critical deep learning applications deployed in the real
world, since (i) the attacker can flexibly trigger the misbehavior of
the model with arbitrary objects and (ii) the attack can be easily
achieved after the model is deployed.

2.2 Opportunity: Backdoor as a Patch

Static foreground/background can be an attack surface. Many
vision applications are deployed to smart cameras with unchanged
static foregrounds and/or backgrounds. For example, smart cameras
could be deployed in airports to check if terrorists pass by [47].
Security cameras are also deployed in military reconnaissance [1].

Such static foregrounds/backgrounds provide perfect attack sur-
faces for attaching malicious patches. It is much easier for an at-
tacker to modify the content in the static foregrounds/backgrounds
(which may belong to public spaces) than changing the models that
are usually securely protected in the users’ private devices. The
content in the static foreground/background is fed into the model
as a part of input, which can interact with the varying content in
the input to generate different behaviors.

Adversarial patch attack. The idea of achieveing attack by
controlling a portion of input is not new. Prior research has found
that DNNs are vulnerable to adversarial patches, i.e., a carefully-
designed input patch attached to the input image. Such an attack
could work because DNNs are known to have redundant neurons,
which creates unnecessary logic. Adversarial patches could take
advantage of this and activate those redundant neurons to misdirect
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Figure 1: The workflow of PatchBackdoor attack.

the prediction. Previous researchers also found that the adversarial
patch is a way to draw the attention of the model. Therefore, it
might be possible to interfere with the decision logic of a neural
network with an input patch.

Although the adversarial patch attack has demonstrated the abil-
ity to change the prediction results with a small patch, it is not
practical in the real world because the patch is usually a special im-
age generated by training, which limits the flexibility of controlling
trigger conditions.

Our idea: Injecting backdoor logic with a patch. Instead of
directly producing misbehavior with an adversarial patch, our idea
is to inject backdoor logic with a patch, where the logic can be
controlled by the attacker.

Such an attack has two main advantages. First, unlike other
backdoor attacks that need to change the model, our attack does
not require modification on the model and the training data. Second,
the trigger conditions of the attack can be flexibly configured, e.g.,
an arbitrary object exists in the camera view, or the environment
in under certain lighting conditions.

Meanwhile, implementing the conditional patch attack involve
several challenges.

e A backdoor attack needs to fulfill two requirements at the
same time. First, the attack needs to remain deactivated when
the image is normal. Second, the attack needs to be stable
when the input image satisfies the trigger condition. Squeez-
ing the logic into a small patch in the input is non-trivial.
It is hard for attackers to obtain the labeled data used for
training the victim model. How to generate the backdoor
patch with few or no labeled training data is challenging.
To be effective in the real applications, the input patch con-
taining the backdoor logic need to be functional in the phys-
ical world.
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Table 1: The difference between existing attacks and ours.

No Model  Arbitrary Physical-world
Method Modification — Trigger Feasibility
Backdoor Attack False True True
Adversarial Patch True False True
Adversarial Perturbation True False False
PatchBackdoor (ours) True True True

3 OUR APPROACH: PATCHBACKDOOR

3.1 Overview

Threat Model. Suppose there is a deep learning-based vision model
deployed in the physical world. The model takes the image captured
by a camera as the input, and the camera view contains a constant
foreground or background (e.g., a wall or a car hood near the cam-
era). The attacker can inject a backdoor logic (i.e., letting the model
behavior as usual in most of the time, while producing wrong pre-
dictions if the input image satisfies an attacker-defined condition)
by attaching a patch onto the constant foreground/background in
the camera view. We assume the attacker has read access to the
victim model, so that it can use the model weights to do backward
propagation. However, it is impossible for the attacker to modify the
model weights. Moreover, unlike most backdoor attack approaches,
we assume that the attacker has no read or write access to the
original training data.

The overview of our approach is shown in Figure 1. The attack
is achieved by training an input patch p, namely backdoor patch.

In the attack preparation stage, we first obtain the deployed
model from the victim application. Then we choose a real-world
condition that could be activated conveniently as the target attack-
ing condition. We also need to obtain a set of clean images that
are normal input images of the victim model. Such an image set
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should be easy to obtain because the working environment of the
victim model is already known. The backdoor patch is randomly
initialized at the beginning.

Based on the clean images, the selected trigger condition, and the
randomly-initialized backdoor patch, we can synthesize two types
of images. The first is the normal images that have the backdoor
patch attached but the trigger condition not satisfied. The second
is the target images that contain the backdoor patch and satisfy the
trigger condition. The backdoor patch is iteratively optimized to let
the normal images produce normal predictions (so that the patch
looks harmless), while letting the target images produce wrong
predictions expected by the attacker.

After the backdoor patch is trained, it is deployed to the victim
application, by attaching the patch onto a surface in the camera
view. In this way, the victim model is unmodified, but its decision
logic is altered by the attacker.

3.2 Backdoor Patch Training

In Equation 2, the objective of our attack is almost the same as the
backdoor attack. However, instead of modifying the victim model f
to create a new model f”, we leave the model f unchanged. x € X
represents a normal image in a dataset X. Our patch is denoted as
p, and x @ p means to attach the patch p to the image x.

If an input image satisfies the trigger condition ¢ (e.g., a trigger
object is present, the lighting is in a specific condition, etc.), we
represent it as x & c.

Therefore, our attack aims to maximize two probabilities:

P(f(xop)=17), P(fxdpdc)= ytarget)

To meet the above objective, we define the following losses:

Letean(p) = ) L(f(x @ p),§) ®)
xeX
Lattack(p) = ) L(f(x ® p ® ©), Yrarger) @
xeX

where L;jeqp is the loss function to encourage patch stealthiness,
i.e., the normal input with the patch should produce the correct
prediction. L;;s4ck is the loss to encourage backdoor attack effec-
tiveness, ie., the input image with the patch that satisfies the trigger
condition should produce the attacker-specified wrong prediction.

The optimal backdoor patch p can be found by minimizing the
both losses:

p= arg;nin (Letean(p) + (1 = @)Latrack (P)) (5)
where « is a hyperparameter to balance the clean accuracy and
attack success rate. If « is closer to one, then the patch will focus
more on being stealthy. If « is closer to zero, the patch focuses more
on attacking. Attackers could train a standard adversarial patch if
we set our « to zero. In practice, setting « to 0.5 is usually a good
choice in most cases. However, sometimes « is not easy to determine
depending on many factors, including the backdoor patch size, the
trigger size, and the image resolution. In that case, we could adjust
the hyperparameter ¢ during training to balance the two losses.
This is especially helpful in some cases (e.g., when training on small
images), where the attack effectiveness loss Ly; ;40 and stealthiness
loss L¢jeqn change at significantly different speeds. Using a can
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Figure 2: The calibration board used for physical-world trans-
formation modeling, including the digital calibration board
(left), a photo of the calibration board in the physical world
(center), a digital version of the calibration board generated
with our differentiable transformation (right).

balance the two losses and lead to better tradeoff between the clean
accuracy and the attack success rate.

As we mentioned before, one challenge in generating the back-
door patch is the lack of labeled data. Thus, the ground-truth label
7 in Equation 3 is usually unknown. We borrow the idea of model
distillation to solve this challenge - We can consider the original
model with the constant patch as a new model f/(x) = f(x & p),
and the pixels in the constant patch p are the parameters of the new
model f’. Then, f’ can be trained by distilling knowledge from f,
i.e., Equation 3 can be written as:

Letean(p) = ) L(f(x & p), f(x))

xeX

(6)

In this way, the attacker only needs an unlabeled dataset of clean
images, which is easy to obtain, and the trained patch can mimic the
behavior of the original model, improving the patch stealthiness.

3.3 Digital-Physical Transformation

We have so far described how to train the backdoor patch in the
digital world. However, in practice, the patch should be attached to
a surface in the physical world to conduct the attack. The digitally-
trained backdoor patch may become invalid due to the difference
between the digital and physical worlds. Thus, we need to take the
digital-physical gap into the consideration when training the patch.

Our key idea is to model the digital-physical gap with a differ-
entiable transformation, and optimizing the backdoor patch using
this transformation.

Patch Transformation Modeling. A digital-physical transfor-
mation can be separated into two parts, including shape transfor-
mation and color transformation.

Both the transformations are captured with a carefully-designed
calibration board, as shown in Figure 2. When preparing the attack,
attackers only need to print the calibration board and put it where
they plan to attach the backdoor patch. Then they need to take a
few photos of the calibration board, indicating how it will look like
in the input of the victim model. The goal of patch transformation
modeling is to find a differentiable function that maps the digital
calibration board to its physical-world counterpart.

A regular shape transformation can be implemented as a param-
eterized warp operation [38], which stretches a square image to fit
a quadrilateral. However, the surface to attach the backdoor patch
might not be flat, so we propose to split the surface into several
smaller surfaces and capture their shape transformations individu-
ally. Our calibration board already contains several ArUco markers
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original attacked

patch width

trigger width

Figure 3: An example of how the backdoor patch and back-
door trigger are attached to the image.

that separate the patch to multiple micro-surfaces. We model the
simple shape transformation of each micro-surface and combine
them to form the whole shape transformation.

The color transformation is modeled as a lightweight convolu-
tional neural network (CNN). As shown in Figure 2, our calibration
board contains multiple blocks filled with different colors. By align-
ing the pixels in the digital calibration board and the physical patch
based on the ArUco markers, we can obtain the RGB value mappings
between the digital and physical patches. We use a single-layer CNN
with a 3x3 convolution filter to capture the RGB mapping, and use
the MSE loss to minimize the difference between CNN-generated
color and the actual color. When the loss converges, the generated
CNN is used as the color transformation.

Combining the two transformation modeling techniques, the
attacker can flexibly obtain the mapping relation between the digital
patch and the physical patch deployed in different environments.
In our attack, we consider at least two environments, including the
clean environment where the backdoor should remain deactivated
and the attacking environment where the patch should cooperate
with the trigger to take effect.

Both the shape transformation and the color transformation
described above are differentiable, so it is possible to train the
patch with backpropagation. When we want to train a patch that
is applicable in the physical world, we simply need to apply the
transformations before feeding the patched images into the target
model.

4 EVALUATION

Experiment setup. In most experiments, the backdoor patch is
placed as a top-left sidebar in the input image, and the original
image is resized to fit into the bottom right corner. The backdoor
trigger is a white square placed next to the sidebar. The models
used in the experiment are all pre-trained on the original datasets.
We use patch width and trigger width to describe the size of the
patch and the trigger. Figure 3 illustrates an original image and its
corresponding attacked image, as well as the definitions of patch
width and trigger width. The two important metrics in our experi-
ments are clean accuracy (ACC for short), i.e., the accuracy of the
model on the normal dataset after the backdoor patch is applied,
and attack success rate (ASR for short), i.e., the ratio of misclassified
images among all images with the backdoor trigger presented.
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Figure 4: The correlation between the attack effectiveness
and the sizes of backdoor patches and triggers.

The experiments are conducted on three CNN models including
VGG [40], ResNet [16], and MobileNet-V2 [39] and three datasets
including CIFAR-10 [24], Imagenette [18], and Caltech [9].

4.1 Attack Effectiveness

We first evaluate the effectiveness of our attack by measuring the
attack success rate and clean accuracy on the common models and
datasets. Since the three datasets have different sizes, the patch
widths and trigger widths vary. Specifically, the patch width and
trigger width are 7 and 3 respectively on CIFAR-10 and 36 and 38
on Imagenette and Caltech.

The results are shown in Table 2. PatchBackdoor achieves a high
attack success rate (93%-99%) while maintaining a reasonable clean
accuracy. The high attack success rate demonstrates the vulner-
ability of target models to our attack, while the clean accuracy
illustrates that the backdoor patches do not substantially affect the
performance of models on normal unperturbed input.

The accuracy drops for CIFAR-10, Imagenette, and Caltech are
around 10%-15%, 0%-7%, and 4-10% respectively. The reason why
the accuracy drop for CIFAR-10 is higher is probably because the
CIFAR-10 dataset contains images of smaller size, resulting in fewer
pixels and reduced information capacity in the backdoor patch.

The attack effectiveness results for the three models are close.
However, an interesting obversation is that the models with higher
original accuracy also produce higher clean accuracy after the
backdoor patch is attached. This probably means that the learning
abilities of the victim models can be transferred to the backdoor
patches when the patches are trained to maximize the stealthiness.

We have also compared the effectiveness of PatchBackdoor with
the classical data poisoning attack (BadNet) on three different
datasets. On all datasets, our attack success rates are higher than
data poisoning with 1% poisoning ratio. On datasets with larger im-
age sizes (Imagenette and Caltech), our attack performance is even
higher than 10% data poisoning. However, our attack is slightly less
effective than 10% data poisoning on the CIFAR-10 dataset. This is
due to the fact that the reduced image size creates less opportunity
for injecting backdoor logic. After all, BadNet is a attack that needs
data poisoning and model training.

Influence of Patch Size and Trigger Size. We further analyze
the relation between the attack effectiveness and the sizes of back-
door patch and trigger. We select the Imagenette dataset for this
evaluation due to its large image size. The victim model is ResNet.
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Table 2: The clean accuracy and the attack success rate on different models and datasets. ACC stands for clean accuracy. ASR
stands for attack success rate. P-ratio stands for poisoning ratio.

- PatchBackdoor | BadNet P-ratio=5% | BadNet P-ratio=10%

ID Model Dataset Original Acc. ACC ‘ ASR ACC ASR ACC ASR
1 MobileNet-V2 CIFAR 10 93.61% 83.41% | 95.91% | 90.45% 91.55% 89.08% 96.00%
2 ResNet50 CIFAR 10 94.26% 84.01% | 95.53% | 90.30% 91.25% 90.99% 95.39%
3 VGG16 bn CIFAR 10 93.65% 79.00% | 93.11% | 88.62% 87.78% 88.96% 96.69%
4 | MobileNet-V2 Imagenette 96.05% 94.75% | 98.98% | 89.43% 93.55% 92.84% 93.61%
5 ResNet50 Imagenette 97.24% 90.24% | 98.30% | 90.50% 91.18% 85.20% 95.46%
6 VGG16 bn Imagenette 95.92% 95.95% | 96.82% | 86.93% 92.33% 87.57% 95.41%
7 | MobileNet-V2 Caltech 89.28% 85.08% | 97.64% | 89.87% 77.83% 88.84% 89.50%
8 ResNet50 Caltech 92.16% 88.78% | 98.00% | 91.44% 76.48% 90.75% 88.91%
9 VGG16 bn Caltech 90.95% 80.49% | 93.28% | 76.25% 77.66% 76.35% 89.41%

Table 3: The effectiveness of our attack when trained and
evaluated on models with different pruning ratios.

Test Prune 0% Prune 30% Prune 60% Prune 90%
m ACC | ASR | ACC | ASR | ACC | ASR | ACC | ASR
Prune 0% 97.5 | 98.0 | 955 | 993 | 94.7 | 958 | 93.7 | 114
Prune 30% 983 | 832 | 974 | 97.9 | 95.6 | 949 | 94.1 | 11.9
Prune 60% | 985 | 13.2 | 985 | 17.8 | 96.8 | 98.5 [ 947 [ 10.9
Prune 90% | 98.1 [ 10.5 | 98.0 | 106 | 97.3 | 11.3 [ 949 [ 97.9
Prune 0%&90% | 96.4 | 98.1 | 945 | 99.2 | 945 | 94.6 | 943 | 97.8

All other parameters except the patch width and trigger width held
constant at default values.

As shown in Figure 4, both the patch size and trigger size in-
fluence the clean accuracy and attack success rate. As the patch
width increases, both the ACC and ASR increase initially, which is
intuitive because the larger patch width represents a larger area for
the attacker to manipulate, providing more opportunities to plant
backdoor logic. However, as the patch width continues to increase
beyond 40, the ASR continues to increase while the ACC starts to
drop. This is because the area of the original image becomes too
small to carry enough information for classification.

On the contrary, the increase of trigger width constantly leads to
the increase of clean accuracy. This may seem counterintuitive since
the clean accuracy is measured on clean images that do not contain
the trigger. The main reason is that the backdoor patch contained
in PatchBackdoor has two competing objectives - (i) remaining
highly accurate under normal conditions, and (ii) producing incor-
rect predictions when combined with the trigger. PatchBackdoor
achieves both these objectives by optimizing the pixels in the back-
door patch. A larger trigger size makes the latter objective easier
to attain, allowing the backdoor patch to focus more on the former
objective of improving clean accuracy under normal conditions.

4.2 Attack Robustness

We further investigate whether our backdoor patch remains effec-
tive after the victim model is modified. The experiments are all
conducted with the Imagenette dataset and ResNet50. Both the
patch width and trigger width are set to 40.

Robustness against pruning. We first consider the case where
the victim model is pruned after our attack. Specifically, we consider
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four pruning ratios of a same model, including 0% (the original
model), 30%, 60%, and 90%. The corresponding model accuracies
are 99.46%, 99.51%, 99.54%, and 97.43%, respectively. The models are
pruned and fine-tuned with the global L1 pruning [14]. As shown in
Table 3, the backdoor patch trained on the original model or the 30%-
pruned models performs well on the 60%-pruned model. However,
the attack trained on models with higher pruning ratios cannot
transfer effectively to models with lower pruning ratios. The reason
for this is that highly pruned models requiring more fine-tuning,
which results in larger modification of the model parameters and
subsequently worsens the transferability. In the last row, the attack
is trained on both the original model and the 90%-pruned model.
Surprisingly, the results indicate that the attack remains effective
on all other pruned models. This finding suggests that training the
patch on multiple models can enhance its robustness.

Robustness against fine-tuning. Similarly, we test the effec-
tiveness of the patch backdoor after the victim model is fine-tuned.
In our study, we initially trained the backdoor patch on the original
model, which achieved a clean accuracy of 96.18% and an attack
success rate of 99.13%. Subsequently, we fine-tuned the model for
40 epochs (accuracy increased from 99.34% to 99.52%). Next, we as-
sessed the patch’s performance on the finetuned model, revealing a
clean accuracy of 95.11% and an attack success rate of 99.54%. These
results closely resemble the effectiveness observed on the original
model, thereby demonstrating the robustness of our attack against
normal fine-tuning. When the model parameters are significantly
changed (e.g., fine-tuned on different data), the attack trained with
the original model may be less effective. In that case, the attacker
can re-generate the backdoor patch with the new model, which is
quite efficient according to Section 4.6.

Robustness against distillation. We also consider the case
when the attack is trained on the original model and applied to a
distilled model. Such robustness is useful when the model parame-
ters are not accessible - attackers can distill a surrogate model using
the inference interface and train the attack on the surrogate model.
Specifically, we assume that the attacker is aware of the model
structure and has access to a similar distribution of the original
dataset. After distilling and training the patch on the surrogate
model, we achieve a clean accuracy of 93.63% and an attack success
rate of 99.36%. When testing the patch on the victim model, we
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Table 4: The AUROC scores computed by different Out-Of-
Detection detectors for different datasets. The in-distribution
dataset is a CIFAR-10 subset, and the compared datasets in-
clude another CIFAR-10 subset, CIFAR-100, SVHN, and Patch-
Backdoor (CIFAR-10 with a backdoor patch attached). The
higher AUROC score means that the compared dataset can
be more easily detected as OOD.

Data ‘ FSSD[20] ‘ Baseline[17] ‘ Maha([25] ‘ ODIN[29]
CIFAR-10 sep 94.0% 59.3% 91.4% 90.4%
CIFAR-100 74.4% 79.8% 54.8% 81.5%
SVHN 99.5% 89.9% 99.1% 96.6%
PatchBackdoor 78.3% 68.3% 68.1% 69.5%

observe a clean accuracy of 92.23% and an attack success rate of
98.32%, which are just slightly lower than on the surrogate model.

4.3 Stealthiness against Detection

Most defenses against backdoors do not apply to our approach,
because they mostly concentrate on identifying or mitigating ma-
nipulations made to the training datasets or the models, while our
approach does not make any modification to the model architec-
ture, model parameters, training data, and training procedure. The
defenses against adversarial patches also do not apply. Adversarial
patch defenses are mostly based on the fact that adversarial patch
attacks aim to alter the prediction when the patch is present [21, 33].
However, the backdoor patches in PatchBackdoor aim to keep the
original predictions, which is a fundamentally different goal as
compared with adversarial patches.

However, since the backdoor patch needs to be constantly placed
in the camera view, it will alter the data distribution of camera
images and may be detected by out-of-distribution (OOD) detectors.
Therefore, we use different OOD detection methods (Baseline[17],
FSSD[20], Maha[25], ODIN[29]) to see whether they can distinguish
the PatchBackdoor-modified images with other normal images. We
use the CIFAR-10 dataset and ResNet model in this experiment, and
the patch width and trigger width are 7 and 3 respectively.

We train the OOD detectors with a subset of CIFAR-10 as the in-
distribution dataset, and use them to measure the OOD degrees of
different out-of-distribution datasets. The compared OOD datasets
include another subset of CIFAR-10 with different classes (CIFAR-
10 sep), the CIFAR-100 dataset, and the SVHN dataset. The OOD
degree is measured as the AUROC metric, and a higher AUROC
means that the dataset is more easily detected as OOD.

The results are shown in Table 4. We can see that the SVHN
dataset can be easily detected as OOD with high AUROC scores,
while the AUROC scores for the CIFAR-10 subset and CIFAR-100
are much lower. It is an intuitive result since SVHN is indeed more
distributionally different with CIFAR-10 than the other two datasets.
The dataset with PatchBackdoor (i.e., CIFAR-10 images with the
backdoor patch attached) yields much lower AUROC scores than
SVHN, and sometimes even lower than CIFAR-10 subset and CIFAR-
100. This means that our backdoor patches are not easy to detect
with common OOD detectors.
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Figure 5: The tradeoff between clean accuracy (ACC) and
attack success rate (ASR) under different settings.

4.4 ACC-ASR Tradeoff under Different Settings

In this subsection, we analyze the tradeoff between clean accu-
racy (ACC) and attack success rate (ASR) under different settings
of PatchBackdoor. Our method incorporates a hyperparameter, a,
that governs the weighting of two competing loss functions during
model training. The first loss function optimizes standard classi-
fication accuracy on benign examples, while the second aims to
maximize the misclassification of adversarial examples to a specific
target label. By adjusting «, we can precisely control the trade-off
between model accuracy on normal inputs and the success rate
of the implanted backdoor. We use the CIFAR-10 dataset and the
ResNet model in this experiment.

In Figure 5, each point represents an experiment. The experi-
ments are conducted with different settings, including the backdoor
patch width, the location of trigger, and the type of trigger. Overall,
we can see that the ACC and ASR exchanges with each other under
all settings. This is intuitive as we have mentioned that they are
competing goals of our backdoor patch. In cases when the patch
size and trigger location are proper (e.g., the blue dots), the ACC
and ASR can both be high.

If the backdoor patch size is smaller (the red dots), both the ACC
and the ASR decrease. The reason has been discussed in Section 4.1.

The comparison between the blue, clay, and purple curves demon-
strates that the attack performance decreases as the trigger appears
at positions farther from the patch. This is because that the closer
distance between the trigger and the patch makes it easier for com-
bining them to produce misbehavior. Meanwhile, even when the
location is fixed (purple dots), the performance is still worse than
that of a randomly positioned trigger (clay dots). This indicates
that although the randomness of trigger location may have some
impact on the attack performance, the distance between the patch
and the trigger is a more influential factor.
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Figure 6: Physical-world feasibility of PatchBackdoor. The
victim model is a traffic sign classifier, the backdoor trigger
is the car model on the right.

We also consider the cases where the trigger is an image pattern
instead of a patch. The green curve means that the trigger pattern is
a brightness shift within the image. We can see that PatchBackdoor
can also successfully perform the attack, although the ACC-ASR
tradeof is slightly worse than the blue curve. This demonstrates
the flexibility of PatchBackdoor in customizing trigger conditions.

4.5 Physical World Feasibility

In this experiment, we capture images of various traffic signs from
different angles and train a customized traffic sign classifier as
the victim model. Our backdoor patch is trained with the digital-
physical transformation (Section 3.3), printed on a standard A4
paper, and placed below the traffic signs. The backdoor trigger is a
car model - our attack aims to let the model misclassify the traffic
sign when the car model is present.

Our attack achieved a clean accuracy of 90.73% and an attack
success rate of 100% on our self-collected images. These results
demonstrate the feasibility of our attack in the physical world. The
high clean accuracy and attack success rate demonstrate that both
the stealthiness and attack effectiveness of the generated back-
door patch. The backdoor logic of PatchBackdoor is robust enough
against real-world transformations.

4.6 Efficiency

We evaluated the training efficiency of our attack on a Linux desktop
with a NVIDIA GTX 3090 GPU. The Imagenette dataset and the
ResNet-50 model were employed. Both the patch width and trigger
width were set to 40.

As shown in Figure 7, the patch training process was efficient.
Specifically, the patch achieved a clean accuracy of 92.69% and an
attack success rate of 94.04% within 5 minutes. The clean accuracy
and the attack success rate further increased to 95.15% and 94.31%
at around 11 minutes.

5 RELATED WORK

Adversarial Patch Attack modifies the pixels within a local region
of the image to induce model misclassification. Brown et al. [2]
first applied a universal and physically achievable patch on victim
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Figure 7: The attacked effectiveness achieved by training
with different periods of time.

objects. LaVAN [23] and adversarial QR patch [4] were proposed to
improve patch stealthiness. Some other approaches [30] attempt to
use different methods like GAN to generate the adversarial patch.
Adversarial reprogramming [7] discussed the idea of repurposing a
neural network with a large adversarial patch, which is the closest
to ours, but it was not designed for backdoor attacks, and its large
digital patches are unlikely to be feasible in the physical world.
Defenses against adversarial patches are mostly based on saliency
map [15, 34], adversarial training [11, 37], small receptive field
[44, 46], certification [21, 33], etc. Our attack also uses the image
patch to pose the threat, while our goal (injecting backdoor logic)
is fundamentally different from standard adversarial patch attacks.

Backdoor Attack is aimed at embedding hidden backdoors
activated by specific triggers into the model. Existing backdoor at-
tacks can be roughly categorized into poisoning-based approaches
[27, 36] and model editing-based approaches [26]. The data poi-
soning methods modify the training data to misled the model to
classify certain objects as attacker-specified labels. Various efforts
have made poison data more concealable [19]. In model editing
approaches, attackers focus on modifying the model parameters or
injecting extra malicious modules [5].

To defend against backdoor attacks, most approaches aim to
prevent or detect data poisoning [10, 22], or removing the injected
backdoors from the model [43, 45]. Our method is also a backdoor
attack, but the threat model is fundamentally different - we do not
require any modification to the training data and victim model.

6 CONCLUSION

We introduce a backdoor attack against DNN models that injects
backdoor logic by attaching a patch in the camera view instead of
modifying the training procedure or the model. Experiments have
demonstrated the effectiveness of the attack and the feasibility in
the physical world. Our work suggests that, besides the training
data and the model, the constant camera foreground/background
may be an important attack surface in edge Al systems.
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