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ABSTRACT
Deep learning models are increasingly deployed to edge de-
vices for real-time applications. To ensure stable service qual-
ity across diverse edge environments, it is highly desirable 
to generate tailored model architectures for different condi-
tions. However, conventional pre-deployment model gener-
ation approaches are not satisfactory due to the difficulty of 
handling the diversity of edge environments and the demand 
for edge information. In this paper, we propose to adapt the 
model architecture after deployment in the target environment, 
where the model quality can be precisely measured and private 
edge data can be retained. To achieve efficient and effective 
edge model generation, we introduce a pretraining-assisted 
on-cloud model elastification method and an edge-friendly 
on-device architecture search method. Model elastification 
generates a high-quality search space of model architectures 
with the guidance of a developer-specified oracle model. Each 
subnet in the space is a valid model with different environ-
ment affinity, and each device efficiently finds and maintains 
the most suitable subnet based on a series of edge-tailored 
optimizations. Extensive experiments on various edge devices
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demonstrate that our approach is able to achieve significantly
better accuracy-latency tradeoffs (e.g. 46.74% higher on av-
erage accuracy with a 60% latency budget) than strong base-
lines with minimal overhead (13 GPU hours in the cloud and
2 minutes on the edge server).
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1 INTRODUCTION
Deep learning has enabled and enhanced many intelligent
applications at the edge, such as driving assistance [17, 63],
face authentication [4, 5], video surveillance [55, 62], speech
recognition [36, 49], etc. Due to latency and privacy consid-
erations, it is an increasingly common practice to deploy the
models to edge devices [9, 53], so that the models can be
invoked directly without transmitting data to the server.

The diversity of execution environments is a unique char-
acteristic of edge devices as compared with the cloud. For
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example, a video app may deploy a super-resolution model
on millions of smartphones, ranging from low-end devices to
high-end ones, and their computational capacity may differ
by up to 20 times. Generating a model for each type of device
to guarantee the user experience is very time-consuming; an
object detection model may run on different kinds of driving
assistance systems, and the computational power may range
from 20 to 1000 TOPS. To guarantee safety, the model infer-
ence usually has a strict latency budget. Even on the same
type of devices, the model execution environments may also
vary across instances and change over time due to different
hardware states and concurrent processes. To provide a good
and uniform user experience, developers are usually required
to generate tailored models for diverse edge environments.

There are many techniques proposed to automatically gen-
erate tailored models according to the target environments.
Most of them are cloud-based approaches, in which the mod-
els are determined on the cloud side before distributing to
edge devices. We call them “pre-deployment approaches”
in this paper. Neural Architecture Search (NAS) [2, 3, 31, 33,
38, 67] is the most popular technique of this type due to its
superior flexibility to change network architectures. It typi-
cally requires collecting information (about computational
resources, runtime conditions, data distribution, etc.) from the
target environments to guide the model architecture search
and training processes in the cloud.

Despite the effectiveness to find optimal model architecture
based on the target environment, NAS approaches are less
practical in many edge/mobile scenarios where the model
execution environments may be very diverse and dynamic.
Searching and maintaining the optimal model architecture in
the cloud for each edge would be very compute- and labor-
intensive. Thus, a more economic and ideal solution is to
let the model self-adapt to the target environment after de-
ployment, which we call “post-deployment approach” to
distinguish with the conventional methods, as illustrated in
Figure 1. Doing so brings several other benefits - the quality
of model architectures can be more precisely measured in the
target environment, and user privacy can be better protected
because there is no need to collect edge information.

The idea of adapting the model to the target device has been
explored in both the mobile computing community [8, 12]
and the machine learning community [34, 50]. The mobile
community is mainly focused on model scaling, i.e. adjusting
the model complexity to fulfill certain latency requirements,
while ML research mainly aims to deal with different data
distributions or hard/easy samples. Model scaling approaches
share a similar goal as ours, but prior work only shrinks
the model size through pruning or quantization instead of
changing the model architecture, which limits the opportunity
to achieve optimal accuracy-latency tradeoffs.

To this end, we introduce AdaptiveNet, an end-to-end sys-
tem to generate models for diverse edge environments through
post-deployment on-device neural architecture adaptation. We
focus on two related challenges in AdaptiveNet. First, generat-
ing the search space of model architectures is non-trivial since
the space must contain enough high-quality candidates that
are suitable for different edge conditions. Second, directly
searching the optimal model architecture at the edge may be
time-consuming due to the limited on-device resources.

AdaptiveNet addresses the above challenges by training a
supernet once and letting the edge devices choose the satis-
factory subnet on their own. The method can be divided into
two stages, the on-cloud elastification and on-device search.

In the first stage, we design an on-cloud model elastifi-
cation method to generate a high-quality search space for
edge devices. Specifically, the elastification takes an arbitrary
pretrained model as the input and converts it to a multi-path
supernet by adding branches into the pretrained model, ensur-
ing each path in the supernet is a valid and useful model. We
introduce block-wise knowledge distillation to train the newly
added branches, which consequently improves the quality of
the subnets. Our supernet offers millions of model variations
with different structures, and the edge side only needs to find
the best structure iteratively without additional training.

In the second stage, to improve the efficiency of architec-
ture search and update at the edge, we systematically optimize
the search process according to edge characteristics. We first
build a performance model on the device by profiling each
block in the supernet, which guides the candidate selection
during the search, therefore reducing the number of iterations
needed to find the optimal model architecture. Then we intro-
duce a reuse-based model evaluation method, which caches
intermediate features across model candidates to reduce the
time required to evaluate the models in each iteration.

To evaluate our approach, we conduct experiments with
various popular tasks (image classification, object detection,
and semantic segmentation) and models (ResNet [16], Mo-
bileNetV2 [39], EfficientNetV2 [43], etc.) on three edge de-
vices including Jetson Nano, Android smartphone (Xiaomi
12), and edge server (NVIDIA 2080 Ti GPU). We com-
pare AdaptiveNet with several strong baselines including
LegoDNN [12], FlexDNN [7], SkipNet [50], and Slimmable
Neural Networks [58]. The results have shown that our method
can achieve significantly better accuracy-latency tradeoffs
than state-of-the-art baselines. For example, our method can
generate models that have 46.74% higher accuracy than those
produced by other methods with a latency budget of 60%.
Meanwhile, the overhead of our method is minimal which
only takes 13 GPU hours for elastification in the cloud and 2
minutes for adaptation on the edge server.

Our work makes the following technical contributions:
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(a) Pre-deployment on-cloud model generation (conventional). (b) Post-deployment on-device model adaptation (ours).

Figure 1: Comparison of pre-deployment and post-deployment model generation approaches.

(1) We propose and develop the concept of on-device post-
deployment neural architecture adaptation, and imple-
ment it with an end-to-end system.

(2) We introduce a pretraining-assisted model elastifica-
tion method that can effectively and flexibly generate
a model search space, as well as edge-tailored strate-
gies to search the optimal model from the space and
maintain it at runtime.

(3) Our method achieves significantly better accuracy-latency
tradeoffs than SOTA baselines according to experi-
ments on various edge devices and common tasks. The
tool and models are open-sourced at https://github.com/
wenh18/AdaptiveNet.

2 BACKGROUND AND MOTIVATION
2.1 Current Practice and Related Work for

Edge Model Generation
Deploying deep neural networks (DNNs) at the edge is in-
creasingly popular due to latency requirements and privacy
concerns. Since DNN models are mostly computationally
heavy, deploying them to the edge usually has to consider two
characteristics of edge devices. First, edge devices are mostly
resource-constrained. As a result, there are already a lot of
efforts on improving the performance of DNN models on
edge devices, including optimizing the DNN inference frame-
work on heterogeneous edge devices [11, 22, 48], designing
lightweight model backbones [18, 19, 39, 42, 43, 64] and
compressing the models to be deployed [13, 40, 47, 61, 65].

Besides the resource limitation, another major challenge of
edge environments is the diversity - model developers usually
need to deploy a certain model to thousands even millions of
devices that are different from each other. The deployed mod-
els are usually expected to meet a certain budget of latency

while achieving higher accuracy, or achieve certain expected
accuracy while minimizing the latency. Thus, customizing
the model for different target devices becomes a necessity.

The current practices to handle edge environment diversity
are mostly cloud-based pre-deployment approaches, i.e. the
central server generates models for different edge devices be-
fore distributing them for deployment. Since manually design-
ing models for diverse edge environments is cumbersome, the
common practice is to use automated model generation tech-
niques. NAS [10, 26, 41, 52, 56] is the most representative and
widely-used model generation method, which searches for the
optimal network architecture in a well-designed search space.
Most NAS methods require training the architectures during
searching [33, 38, 41, 67], which is very time-consuming
(10,000+ GPU hours) when generating models for a large
number of devices. One-shot NAS [2, 3, 20, 32] is proposed
to greatly reduce the training cost by allowing the candidate
networks to share a common over-parameterized supernet.
Among them, several approaches also mention the concept of
directly searching the architecture for target data and devices
[3, 32]. However, they require to collect much information
from the edge devices to build accuracy and latency predic-
tors, which are used to guide the search process in the cloud.

There are also several approaches proposed to scale models
at the edge to provide a wider range of resource-accuracy
trade-offs. Most of them apply structured pruning (or similar
techniques) to generate various descendent models [8, 12,
27, 34, 51, 57, 58], which can adjust the size of each net-
work module without changing the architecture. However,
they have limited abilities to generate optimal models for
diverse edge environments due to the restricted model space.
Dynamic Neural Networks [14] are a type of DNN that sup-
port flexible inference based on the difficulty of input. When
the input is easy, Dynamic Neural Networks can reduce the

410

https://github.com/wenh18/AdaptiveNet
https://github.com/wenh18/AdaptiveNet


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Wen et al.

Table 1: Average latency (ms) of two DNN models on four
mobile phones.

Device MobileNetV2 ResNet50

XIAOMI 12 (Snapdragon 8 Gen 1) 14.43 90.67
HUAWEI nova 4 (HiSilicon KIRIN 970) 53.05 372.22

Google Pixel 2 (Snapdragon 835 64) 46.45 283.74
Google Pixel 6 Pro (Google Tensor) 31.29 144.21

Table 2: Average latency (ms) of two DNN models under
different conditions on NVIDIA 2080 Ti. The background
processes use the same setting of the process in the “nor-
mal” condition, i.e. continuous DNN inference with batch
size 32 and CUDA version 11.3. In the “CUDA version
changed” condition, we change the CUDA version to 10.1.
In the “different batch size” condition, the batch size is
set to 64.

Condition MobileNetV2 ResNet50

Normal 13.35 33.79
1 background process 14.37 50.36

3 background processes 24.07 115.09
CUDA version changed 13.69 35.89

Different batch size 12.23 31.71

computation by skipping a set of blocks [50, 54] or exiting
from the middle layers [7, 24, 25]. However, this kind of
work only considers dynamically adjusting the depth of DNN
models, and they are not completely suitable for situations
where latency budgets are strict.

2.2 Limitations of Current Practice
We conduct several motivational studies to understand the
limitations of the conventional model generation method.

We argue that the cloud-based pre-deployment model gen-
eration approaches underestimate the diversity of edge envi-
ronments. We identify three types of diversity:

(1) Inter-device diversity. Edge devices are equipped with
various types and grades of processors for DL infer-
ence, such as CPU, GPU, and AI accelerators. Even for
devices with the same type of hardware, their condi-
tions can be different. We measure the inference latency
of two popular DNN models on four different mobile
devices. As shown in Table 1, the inference latency of
a model varies a lot on different devices.

(2) Intra-device diversity. Even on the same device, the
inference latency of a model may also be affected by
various factors, including background processes, soft-
ware versions, hardware aging, ambient temperature,
etc. Table 2 shows the non-neglectable impact of vary-
ing conditions on inference latency.

Figure 2: Performance of cloud-trained accuracy predic-
tor on distribution-shifted edge data. The edge data is
simulated with Dirichlet distributions with (a) 𝛼 = 0.005
and (b) 𝛼 = 0.1. The sample ratios of top-50 classes are
shown in (c) and (d).

(3) Data distribution diversity. NAS approaches need to
search for the optimal architecture over a given dataset.
However, edge devices are usually used in different
locations and by different users, dealing with different
data distributions [23]. For example, some smart cam-
eras are deployed in outdoor scenarios while some are
indoor, and the common classes of objects in the scene
may be different across devices.

Such complex and ubiquitous diversity poses several dif-
ficulties for cloud-based model generation. First, tailoring
models for diverse edge environments is a heavy task. To
generate optimal model architecture for each edge environ-
ment, the current practice requires repeating the search pro-
cess for all types of environments and maintaining them in
the cloud. The required manual and computational effort are
determined by the granularity of edge environment diversity
to consider, which might be burdensome if the developers
want to achieve optimal latency-accuracy tradeoffs on more
devices. Meanwhile, handling the dynamicity of the edge
environment is even more difficult since it requires frequent
communications with each edge device and rapid reactive
model updating in the cloud.

Second, modeling the edge environment may also be
difficult. A necessary step in the cloud-based model gener-
ation is to estimate the performance of the candidate model,
such that the model architecture can be optimized according
to the target hardware and data. For example, existing NAS
methods are usually based on accuracy and latency predictors
[2]. Building the predictors requires collecting intensive edge
information, which is not easy, especially for the accuracy pre-
dictor that depends on the potentially private edge data. The
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compromise solution is to use a unified accuracy predictor
for different edge devices [2]. However, the unified accuracy
predictor may not perform well for edge devices with data
distribution shifts. As shown in Figure 2, the accuracy values
and rankings of candidate models predicted by the once-for-
all accuracy predictor [2] are both different from the ground
truth, which indicates that the predictors can be unreliable on
edge distributions, leading to sub-optimal model generation.

2.3 Post-deployment Neural Architecture
Generation: Goal and Challenges

The limitations of existing edge model generation methods
motivate us to think, can we directly search for the optimal
neural architecture on the edge device after deployment?

Doing so brings several key advantages. Unlike traditional
on-cloud NAS which has to estimate the performance of
subnets, edge devices can directly evaluate the performance
of a given model architecture natively, which is more precise.
Besides, searching on the device is a plug-and-play process
and does not need to collect edge information to the cloud,
bringing the benefits of protecting user privacy and reducing
the computation overhead of the cloud.

On the other hand, finding the optimal model architecture
directly at the edge is challenging. First, generating the
model search space for edge devices is difficult. The search
space should be flexibly and easily customizable to support di-
verse edge applications and different ranges of target devices.
Meanwhile, since the training abilities of edge devices are
usually weak, the search space should contain high-quality
candidate models that can be used in different edge environ-
ments with minimal (or even no) further tuning. Second, the
model search process can be time-consuming at the edge.
Existing architecture search methods require either training a
lot of candidate models or repeatedly evaluating the perfor-
mance of the candidates. Both are very heavy for the edge
devices because of the limited computing resources and tight
deadline of model initialization. Dynamically updating the
model according to environment changes is even more time-
sensitive.

3 ADAPTIVENET OVERVIEW
To solve the aforementioned challenges and realize the vision
of post-deployment model generation, we introduce Adap-
tiveNet, an on-device neural architecture adaptation approach
for diverse edge environments. To the best of our knowledge,
AdaptiveNet is the first end-to-end system to enable on-device
architecture adaptation.

The main idea of AdaptiveNet is to generate high-quality
model search spaces based on developer-specified pretrained
networks through modular expansion and distillation, and
efficiently search for the optimal architecture on the target

device guided by performance modeling. Figure 3 illustrates
the architecture of AdaptiveNet, which includes an on-cloud
model elastification and an on-device subnet search.

Our model elastification is efficient by leveraging the guid-
ance of a developer-specified pretrained model. It mainly
consists of a granularity-aware graph expansion step and a
distillation-based training step. Given an arbitrary pretrained
network, we first discover the repeating basic blocks and
determine the replaceable paths in the computational graph.
Then we add optional branches to the model to extend it into a
supernet. The added branches include layers that can replace
multiple original layers, or structured-pruned layers that re-
duce the computational cost of individual layers. Each path
from the input to the output in the graph is a valid subnet,
which consists of both original and newly added modules.

The supernet obtained by graph expansion contains a large
variety of architectures with different levels of computational
complexity. We then further improve the quality of each can-
didate architecture in the supernet through training, so that on-
device training can be avoided to save computation cost. Since
our supernet is generated from a pretrained model, we use
branch-wise distillation to efficiently train the newly-added
branches to mimic the original branches. The distillation is
followed by a whole-graph fine-tuning to further improve the
overall accuracy of the subnets. With all these techniques, the
supernet would contain high-quality subnets that can fit in
different edge environments, and it is deployed to the edge
devices for further adaptation.

The on-device subnet search stage aims to find the most ap-
propriate subnet (that can achieve the highest accuracy within
the latency budget) on resource-limited edge devices. We first
build a latency model by profiling the blocks in the supernet
to precisely estimate the latency of subnets in the native en-
vironment. Based on the latency model, we design a search
strategy that initializes a set of promising candidate models
and iteratively mutates the candidates around the latency bud-
get. The search efficiency is further improved by reusing the
common intermediate features during candidate model eval-
uation. The optimal model is also adaptively updated by the
runtime monitor to handle environment dynamicity.

4 ELASTIFICATION ON CLOUD
The input of the model elastification stage is a developer-
specified pretrained model, similar to the common scenarios
in edge AI deployment. The pretrained model is determined as
the best-performing model that can fulfill (or slightly exceed)
the latency budget on the highest-end target device.

The goal of elastification is to convert the given pretrained
model into a supernet, by expanding alternative basic blocks,
making connections between them, and letting each path in
the supernet (namely subnet) behave correctly. In this way,
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Figure 3: The architecture overview of AdaptiveNet.

Figure 4: Supernet architecture in AdaptiveNet.

the supernet is granted with the elasticity: each subnet has
the discriminative performance characteristics in terms of
inference latency and accuracy. The supernet is then deployed
onto the edge, where the particular edge device can search
for the most suitable subnet according to its own hardware
capacities and data distribution.

There are two main problems to solve in elastification. The
first is how to generate the supernet architecture. Although
prior work [2] has discussed hand-crafted supernets for certain
models, it is still an open question to automatically generate
supernets based on an arbitrary pretrained model, especially
considering the diversity of DNNs. Another problem is how
to train the subnets in the supernet to improve their qual-
ity. A supernet typically contains millions of subnets, thus
training them separately is time-consuming. We propose two
techniques to address these problems accordingly.

4.1 Granularity-aware Graph Expansion
Let N denote the pretrained model we want to elasticize.
The first step is to analyze the computational graph of N
to determine how it can be expanded. We call the smallest

unit in the graph that be replaced as a basic block, and the
block partitioning is determined by the following principles.
First, the size of blocks determines the subnet search space
size and the granularity of how the latency can be controlled.
Thus, we limit the block parameter size to no more than
𝛾 · 𝑃0 where 𝛾 is a parameter to control the granularity and
𝑃0 is the parameter size of the original model 𝑁 . Second, the
blocks should not span fusion layers. For example, Conv and
ReLU can be fused in most inference frameworks [21]. Third,
each basic block should be single-input and single-output
in the original model graph. Following these principles, we
can represent the supernet as a set of connected basic blocks
N = 𝑔𝑟𝑎𝑝ℎ{B (0) ,𝐶}, where B (0) is the set of blocks and 𝐶

denotes the connections between them.
Next, we generate the supernet graph S by expanding the

graph of the pretrained model N through adding alternative
blocks and connections. Particularly, we consider two expand-
ing strategies including merging and shrinking, as shown in
Figure 4. First, we add merged blocks 𝐵 ( 𝑗 )

𝑖
that can replace

multiple basic blocks ( 𝑗 > 0 represents the number of reduced
blocks in the replacement). Suppose {𝐵 (0)

𝑖
, 𝐵
(0)
𝑖+1, ..., 𝐵

(0)
𝑖+𝑗 } are

the basic blocks in N that can be replaced by 𝐵
( 𝑗 )
𝑖

, The in-
put shape of 𝐵 ( 𝑗 )

𝑖
is the same as 𝐵

(0)
𝑖

, and output shape is
the same as 𝐵 (0)

𝑖+𝑗 . The parameter size of 𝐵 ( 𝑗 )
𝑖

is determined
by the largest among the replaced blocks. Second, like tradi-
tional model scaling approaches [8, 12], we also add different
levels of shrunk blocks B (−1)

𝑖
,B (−2)

𝑖
, ... for each basic block

B (0)
𝑖
∈ B (0) by reducing its size with structured pruning and

network slimming techniques [27, 57, 58]. The granularity of
merged blocks and pruned blocks can be balanced to control
the size of subnet search space.

Compared to the existing model scaling methods [8, 12,
58], our supernet has higher elasticity because it allows the
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Figure 5: Illustration of the branch-wise distillation phase.

subnets to have different architectures, rather than just differ-
ent sizes of the same architecture. This is also the reason why
NAS outperforms other model generation techniques on the
server side [2, 42].

4.2 Distillation-based Supernet Training
Next, we need to train the generated supernet to improve the
quality of its subnets, so that the subnet can be directly used
at the edge without further training. We achieve efficient and
effective training by fully utilizing the supernet. The whole
training process includes a branch distillation phase and a
whole-model tuning phase.

Branch-wise distillation. In this phase, we first freeze the
weights of 𝐵0

𝑖 so that the accuracy of the original pretrained
model is preserved. Then we adopt feature-based knowledge
distillation [46] to let the added blocks imitate their corre-
sponding original blocks. As illustrated in Figure 5, in each
iteration, we randomly sample a subnet from the supernet and
use N as the teacher model to train the new branches in the
subnet. Specifically, let 𝑆𝑖 denote the output feature map of a
newly added block 𝐵

( 𝑗 )
𝑖

and𝑇𝑖 denotes the output feature map
of the last block that 𝐵 ( 𝑗 )

𝑖
replaces, we use the L2 distance as

the distillation loss. The loss function is

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 =
1
𝑀

𝑀∑︁
𝑖=1
∥𝑇𝑖 − 𝑆𝑖 ∥22 , (1)

where M denote the number of new blocks in the sampled
subnet. With enough iterations applied, all new blocks in
the supernet will be trained multiple times to improve their
individual quality. Since we only train the new blocks and use
the feature maps of the pretrained model as strong supervision,
the distillation process is efficient and easy to converge.

Further tuning. We further train the supernet using la-
belled data to improve the end-to-end quality of the subnets.
In each step of tuning, we randomly sample a subnet 𝐵 ( 𝑗 )

𝑖
,

forward a batch of samples, compute the Cross-Entropy [35]
loss between the subnet outputs and the labels, and update the
parameters of the added blocks in 𝐵

( 𝑗 )
𝑖

via gradient descent.
The performance of the supernet is measured by sampling
a new set of random subnets and testing each of them on
validation data. We use the latency-range accuracy as the

training progress indicator, which records the average accu-
racy achieved by subnets in each latency range. This phase
starts from the distilled supernet, and thus the learning rates
are relatively small and the convergence is fast.

Notes on design rationale. Each phase in our design is
indispensable to ensure training efficiency and effectiveness.
Using distillation only will lead to suboptimal final accuracy,
and direct training will significantly slow down the conver-
gence. Merging the two phases together is also not desirable
since it will make the loss design and training more difficult.
The experimental comparison can be found in Section 7.5.
We also note that our method does not modify the parameters
of the pretrained model, so it guarantees that the latency-
accuracy tradeoffs will be better than or at least equal to the
pretrained model.

5 ADAPTATION ON EDGE
The supernet generated by model elastification is uniformly
deployed to different edge devices, but it is not directly us-
able since each edge device has different characteristics and
requirements. Thus, we further introduce the on-device adap-
tation stage to obtain the optimal architecture adaptively in
the target environment by searching the subnet space. Such a
search process is similar to traditional on-cloud NAS but has
a higher requirement for efficiency.

According to our analysis, using a normal search method
as in NAS can cost more than 10 hours on edge devices. Most
of the searching time is spent on evaluating the subnets. This
is because we have to perform model inference hundreds of
times to get the accuracy of candidate models in each search
iteration and use the accuracy results to guide the next search
iteration. To reduce the searching overhead, we introduce
a latency model-guided search strategy and a reuse-based
model evaluation method.

5.1 Model-guided Search Strategy
We first optimize the search strategy to find the optimal model
architecture (i.e. the architecture that can achieve the highest
accuracy within the latency budget) with fewer iterations. The
core idea of the optimization is to prune the search with the
guidance of a natively-built latency model.

Formally, suppose 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 denotes the latency budget in
the target environment and 𝐷𝑒𝑑𝑔𝑒 is the edge dataset. Our
goal is to find a subnet N ′ = {𝐵 ( 𝑗1 )

𝑖1
, 𝐵
( 𝑗2 )
𝑖2

, ..., 𝐵
( 𝑗𝑛 )
𝑖𝑛
} from the

supernet S whose latency 𝑇 (N ′) ≤ 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 and accuracy
𝐴𝑐𝑐 (N ′, 𝐷𝑒𝑑𝑔𝑒 ) is optimal. During the search, the accuracy of
the candidate model is directly measured on the edge dataset
𝐷𝑒𝑑𝑔𝑒 , and the latency is computed with a latency model.

The latency model is a table T = {𝑇 ( 𝑗 )
𝑖
} where 𝑇 ( 𝑗 )

𝑖
is the

latency of basic block 𝐵
( 𝑗 )
𝑖

in the supernet. The block latency
is precisely measured on the device through profiling after
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deployment. Note that this process is quick (within seconds)
because the number of basic blocks is small (much smaller
than the number of subnets). Our supernet generation strat-
egy (Section 4.1) ensures that the basic blocks will not be
fused, thus the latency of a chosen subnet is the sum of all its
blocks, i.e. 𝑇 (N ′) = ∑𝑛

𝑘=0𝑇
( 𝑗𝑘 )
𝑖𝑘

. Note that we use the latency
model to compute the latency rather than directly measure
it because end-to-end latency measurement under the actual
model operating condition is time-consuming.

The subnet search process contains two main steps, includ-
ing candidate initialization and candidate mutation, where
the initialization step produces a set of seed subnets and each
mutation step changes the subnets iteratively to better fit the
target environment. Both the initialization and mutation are
customized with the latency model in our approach. Our ex-
periments show that the optimal subnets are often near the
latency budget. Therefore, the initialization and mutation are
designed to keep the search of candidates near the budget.

Specifically, we design two supporting functions 𝑁𝑒𝑎𝑟𝑏𝑦𝐼𝑛𝑖𝑡

and 𝑁𝑒𝑎𝑟𝑏𝑦𝑀𝑢𝑡𝑎𝑡𝑒. 𝑁𝑒𝑎𝑟𝑏𝑦𝐼𝑛𝑖𝑡 generates the initial candi-
date subnets by randomly sampling a group of subnets whose
latencies lie in the range of [𝑇𝑏𝑢𝑑𝑔𝑒𝑡 − Δ𝑇,𝑇𝑏𝑢𝑑𝑔𝑒𝑡 + Δ𝑇 ]. The
models with latency higher than 𝑇𝑏𝑢𝑑𝑔𝑒𝑡 are unlikely to be
useful at the current moment, but they may be used later
to handle dynamic environment change (see Section 5.3).
Next, when we change the candidate subnets in each itera-
tion, we first randomly mutate a subnet by replacing a branch
in it. If the latency of the subnet after mutation is out of
[𝑇𝑏𝑢𝑑𝑔𝑒𝑡 − Δ𝑇,𝑇𝑏𝑢𝑑𝑔𝑒𝑡 + Δ𝑇 ], we iterate the rest branches in
the supernet and find the best alternative branches that can
reduce the latency change.

Both the initialization and mutation strategies are graph
operations that do not involve heavy computation, but they
can significantly reduce the evaluation overhead by improving
search efficiency. Meanwhile, the model-guided initialization
and mutation can be integrated into most standard search
algorithms including evolutionary search [38] and simulated
annealing [32]. Algorithm 1 shows the subnet search strategy
based on evolutionary search.

5.2 Reuse-based Model Evaluation
While the model-guided search strategy reduces the required
iterations, the model evaluation overhead in each iteration is
still high. In each iteration, we usually need to evaluate hun-
dreds of candidate subnets with the edge data to find the most
accurate ones. The candidate subnets usually share common
prefix substructures, so we have the opportunity to save time
by reusing common intermediate features across subnets. For
example, letN ′1 = 𝐺𝑝𝑟𝑒 𝑓 𝑖𝑥 ∪𝐺1 andN ′2 = 𝐺𝑝𝑟𝑒 𝑓 𝑖𝑥 ∪𝐺2 denote
two different subnets and N ′1 is evaluated before N ′2 , during
the evaluation of N ′1 , the output feature of 𝐺𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝐷𝑒𝑑𝑔𝑒 )

Algorithm 1 Edge-friendly optimal subnet search
Input: Elasticized supernet 𝑆 , Local data 𝐷 , Latency budget𝑇 .
Output: Optimal subnet 𝑀 .
1: function MAIN:
2: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑁𝑒𝑎𝑟𝑏𝑦𝐼𝑛𝑖𝑡 (𝑆,𝑇 ); // Section 5.1
3: 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑎𝑏𝑙𝑒 ← Block-wise latency table of 𝑆 ;
4: 𝑟𝑜𝑜𝑡 ← 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑎𝑏𝑙𝑒 );
5: 𝐷𝐹𝑆 − 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝐷, 𝑟𝑜𝑜𝑡 );
6: for 𝑖 = 0; 𝑖 < 𝑠𝑒𝑎𝑟𝑐ℎ_𝑡𝑖𝑚𝑒𝑠 ; 𝑖+ = 1 do;
7: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑁𝑒𝑎𝑟𝑏𝑦𝑀𝑢𝑡𝑎𝑡𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ); // Section 5.1
8: 𝐷𝐹𝑆−𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝐷, 𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑒𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑎𝑏𝑙𝑒 ) );
9: Record best candidate;

10: end for
11: return Optimal subnet 𝑀 ;
12: end function
13:
14: function DFS-EVALUATE(𝐷, 𝑟𝑜𝑜𝑡 ):
15: if 𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑 == 0 then
16: return Evaluate 𝑟𝑜𝑜𝑡 ;
17: else
18: for each 𝑐ℎ𝑖𝑙𝑑 of 𝑟𝑜𝑜𝑡 do
19: 𝑃𝑟𝑒 𝑓 𝑖𝑥𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑐ℎ𝑖𝑙𝑑.𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝐷 );
20: Save 𝑃𝑟𝑒 𝑓 𝑖𝑥𝐹𝑒𝑎𝑡𝑢𝑟𝑒 in cache;
21: 𝐷𝐹𝑆 − 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑃𝑟𝑒 𝑓 𝑖𝑥𝐹𝑒𝑎𝑡𝑢𝑟𝑒, 𝑐ℎ𝑖𝑙𝑑 );
22: Release 𝑃𝑟𝑒 𝑓 𝑖𝑥𝐹𝑒𝑎𝑡𝑢𝑟𝑒;
23: end for
24: end if
25: end function
26:
27: function BUILDTREE(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑎𝑏𝑙𝑒):
28: Get 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 shared by 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠;
29: for 𝑝𝑟𝑒 𝑓 𝑖𝑥 ∈ 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 do
30: Get 𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑙𝑎𝑡𝑒𝑛𝑐𝑦 from 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑎𝑏𝑙𝑒;
31: 𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 ← 𝑝𝑟𝑒 𝑓 𝑖𝑥 .𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑃𝑟𝑒 𝑓 𝑖𝑥𝑖𝑛𝑔𝑅𝑎𝑡𝑒;
32: end for
33: Delete less important prefixes if one subnet has several prefixes;
34: Return the tree of subnets based on 𝑠𝑢𝑏𝑛𝑒𝑡 .𝑝𝑟𝑒 𝑓 𝑖𝑥 ;
35: end function

Figure 6: Illustration of subnets tree. Prefix layers shown
in blue, subsequent in yellow. 𝒙, 𝑭 𝒋

𝒊 , 𝒚𝒊 represent input,
shared features, output respectively.
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can be saved and reused when evaluating 𝑆2, which saves the
inference cost of computing 𝐺𝑝𝑟𝑒 𝑓 𝑖𝑥 (𝐷).

However, saving all the common features during model
evaluation is infeasible because it will take too much memory.
Thus, we can only save part of the common features and im-
prove the reuse ratio as much as possible. In order to achieve
this, we introduce a tree-based feature cache to schedule the
evaluation. The leaf nodes and non-leaf nodes in the tree rep-
resent subnets and common prefix substructures respectively.
The leaf nodes (subnets) sharing the same parent node have
the same prefix substructure represented by the parent node.
And two non-leaf nodes with the same parent node have the
same smaller prefix substructure.

After building the feature cache tree, we evaluate all the
subnets in the depth-first order. When we traverse to node 𝑁 ,
we cache the output feature of that node in memory. Then,
when evaluating the descendant leaf nodes (subnets) of 𝑁 , we
can reuse the cached feature. After evaluating all descendant
leaf nodes (subnets) of 𝑁 , we can release the feature from
memory since it won’t be reused by later subnets. As a result,
the number of saved features is no more than the depth of the
tree, and we can adjust the depth of the tree to control the size
of the feature cache.

Another problem of model evaluation is that testing the
models one by one may lead to too frequent data I/O oper-
ations. Thus, we adopt batch-wise model group evaluation,
i.e. loading a batch of data and evaluating all candidate sub-
nets using the batch. The performance of the subnets is the
average of them on all batches.

5.3 Dynamic Model Update
The optimal subnet found by search is used in the target
environment for serving. However, the subnet may become
suboptimal at runtime upon environment change.

AdaptiveNet deals with environment change by dynami-
cally paging in and paging out alternative blocks. In order to
provide subnets of different latency-accuracy trade-offs, we
maintain a subnet pool during searching (Section 5.1) and
save the [𝑎𝑟𝑐ℎ, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦] tuples of all the searched
subnets, where 𝑎𝑟𝑐ℎ denotes the encoded architecture of the
subnet. After searching, we save the subnet architectures that
achieved the highest accuracy at different levels of latency
(within the latency range [𝑇𝑏𝑢𝑑𝑔𝑒𝑡 − Δ𝑇,𝑇𝑏𝑢𝑑𝑔𝑒𝑡 + Δ𝑇 ]). For
each of these subnet architectures, we save the relative latency
as compared with the current optimal subnet.

At runtime, a latency monitor runs to detect the latency
change of the running model. When the inference latency
exceeds the budget, the latency monitor reports the latency
scaling ratio 𝑟 =

𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
, and searches in the subnet

pool to find the subnet that achieves the highest accuracy
within the scaled latency budget 𝑇𝑏𝑢𝑑𝑔𝑒𝑡/𝑟 . Similarly, when

the actual latency is smaller than the largest relative latency in
the subnet pool, the monitor also replaces the running model
with a better one. If the environment change is too significant
and no subnet in the pool can fulfill the latency budget, we
restart the search process to obtain the new optimal subnet
and subnet pool.

6 IMPLEMENTATION
We implement our method using Python and Java. The on-
cloud elastification part and on-device searching part are de-
veloped with PyTorch and PyTorch Mobile [37].

Handing two-stage models. Some deep learning appli-
cations such as object detection and semantic segmentation
often require two-stage training, e.g. pretraining the backbone
on ImageNet [6] and fine-tuning on the smaller task dataset.
When a DNN model needs to be trained on two datasets,
AdaptiveNet uses a two-stage elastification strategy. Let N
denote the DNN model well-trained on two datasets {𝐷1, 𝐷2}
in order. We first elasticize the backbone of N and train the
newly added branches on 𝐷1 based on feature-based distilla-
tion (Section 4.2.1) method. After distillation, we connect the
elasticized backbone to the head of N to make it a supernet,
and further train it on 𝐷2 (Section 4.2.2).

Devices with limited memory. The supernet generated by
our method is about 2×-5× larger than the pretrained model,
which may not fit in the memory of some low-end devices. We
use block-wise loading and inference to reduce the memory
overhead. Specifically, only the blocks required by the current
subnet are loaded into the memory during searching, and oth-
ers are retained in the disk. Therefore, AdaptiveNet requires
no more memory in the on-edge stage than that required by
the optimal subnet.

7 EVALUATION
We conduct experiments to answer the following research
questions: (1) Is AdaptiveNet able to generate models with
better latency-accuracy tradeoffs? (§7.2, §7.3) (2) Can Adap-
tiveNet utilize the edge data distribution? (§7.4) (3) What’s
the efficiency of AdaptiveNet in both on-cloud and on-edge
stages? (§7.5, §7.6)

7.1 Experimental Setup
Edge environments. We use three edge devices including an
Android Smartphone (Xiaomi 12) with Snapdragon 8 Gen 1
CPU and 8 GB memory, a Jetson Nano with 4 GB memory,
and an edge server with NVIDIA 3090 Ti with 24 GB GPU
memory. The batch sizes are set to 1, 1, and 32 on the three
devices to simulate real workloads. We use different latency
budgets to simulate intra-device hardware diversity. The data
distribution diversity is not considered in most experiments
to fairly compare with the baselines. In Section 7.4, we use
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Dirichlet distribution to generate edge data, the same setting
used in most Federated Learning research [28, 59, 66].

Baselines. LegoDNN [12] and NestDNN [8] are the most
relevant baselines of our work. LegoDNN [12] is a pruning-
based, block-grained technique for model scaling. NestDNN
[8] generates multi-capacity DNN models using filter pruning
and recovering methods. Since the source code of NestDNN
is unavailable and it underperforms LegoDNN [12], we con-
duct a detailed comparison with LegoDNN. We also include
three methods that can be used for on-device model genera-
tion, including Slimmable Networks [57, 58], FlexDNN [7]
and SkipNet [50]. Slimmable Networks [57, 58] design mod-
els whose widths can be flexibly changed without retraining,
FlexDNN [7] is an input-adaptive method that supports early
exits, and SkipNet [50] is a representative dynamic neural
network that can dynamically switch different routes for dif-
ferent inputs. We adapt SkipNet [50] by letting it search for
an optimal fixed route on the target device as the generated
model. And we adapt FlexDNN [7] by specifying an early exit
layer for each latency budget. We also compare with the Effi-
cientNetV2 series [43], which are examples of state-of-the-art
models generated by on-cloud NAS.

Tasks, Models, and Datasets. We evaluate the perfor-
mance of AdaptiveNet on three common vision tasks.

• Image classification aims to recognize the category of
an image. We select three popular classification mod-
els, MobileNetV2 [39], ResNet50 [16], and ResNet101
[16] to represent small, middle, and large models. The
dataset used in this task is ImageNet2012 [6].
• Object detection aims to detect objects in an image,

predicting the object bounding boxes and categories.
We choose EfficientDet [44] with ResNet50 [16] back-
bone as the detection model, which is one of the top-
performing detection models, and COCO2017 [29] as
the dataset. The performance of detection models is
measured by mean average precision over Intersection
over Union threshold 0.5 (mAP@0.5).
• Semantic segmentation aims to predict the class la-

bel of each pixel in an image. We choose FPN [30]
model with ResNet50 [16] encoder pretrained on Ima-
geNet2012 [6]. The dataset is CamVid [1], a road scene
understanding dataset. The performance is measured
by Mean Intersection over Union (mIoU).

7.2 General Model Scaling Performance
We first evaluate the quality of models generated by our
method and the baselines. Specifically, we elasticize Mo-
bileNetV2, ResNet50, and ResNet101 which represent small,
medium, and large models respectively. For small models, we
elasticize them into supernets containing five types of replace-
able blocks {𝐵 (1)

𝑖
, 𝐵
(2)
𝑖

, 𝐵
(0)
𝑖

, 𝐵
(−1)
𝑖

, 𝐵
(−2)
𝑖
}. The pruning rate

of 𝐵 (−1)
𝑖

, 𝐵
(−2)
𝑖

are 0.5 and 0.25 respectively. For medium and
large models such as ResNet50 and ResNet101, we elasticize
them into supernets that only contain original and merging
optional blocks {𝐵 (1)

𝑖
, 𝐵
(2)
𝑖

, 𝐵
(0)
𝑖
}. After elasticizing, the su-

pernets contain 2.58 × 108, 1.06 × 105, 2.57 × 1017 subnets,
respectively. To make a fair comparison, we divide the valida-
tion set into two subsets, one smaller subset (3000 images) to
search for the optimal subnet under 10 latency budgets, and
the rest to evaluate the optimal subnet.

The result is displayed in Figure 7, AdaptiveNet achieves
higher accuracy than baseline approaches at almost every la-
tency budget, and increases accuracy by 10.44% and 28.03%
on average compared to LegoDNN with 90% and 70% la-
tency budget respectively. This is because our elastification
creates better search space of subnets and the two-stage train-
ing technique allows subnets to learn from both the original
pretrained model and the labels. Thus, AdaptiveNet can out-
perform LegoDNN which only trains the descendent blocks
to mimic the original blocks.

Besides, we observe that AdaptiveNet outperforms the
baseline models more at a lower latency budget. At the 60%
and 80% latency budget, AdaptiveNet achieves 42.53% and
29.16% higher accuracy on average respectively. This is be-
cause our approach includes merging two or more blocks into
one replacement block compared to pruning-based model scal-
ing techniques. Such block merging can save more latency
with a smaller loss of accuracy than high-ratio pruning.

We also notice that the gap between AdaptiveNet and
Slimmable Networks is small on smartphones and 3090 Ti.
The main reason is that slimmed networks can better utilize
the computational resources on such devices. However, be-
cause the slimmable models are based on custom backbones,
they cannot support SOTA pretrained models and are not
flexible for normal developers to use.

Further, AdaptiveNet can be used with multiple pretrained
models to achieve more wide-range and fine-grained trade-
offs. Figure 9(a) shows the performance of models generated
from two oracle EfficientNetV2 models, where AdaptiveNet
provides over 20 meaningful latency-accuracy trade-offs be-
tween the oracle models. Thus, developers can use Adap-
tiveNet as an effective supplement to manually-created or
cloud-generated models to offer more choices for the edge
with little overhead (dozens of hours).

7.3 Performance on Other Tasks
We also test AdaptiveNet on object detection and semantic
segmentation to evaluate its generalizability and performance
on complex two-stage tasks (pretrained on ImageNet2012 [6],
fine-tuned on COCO2017 [29] and CamVid [1]). Our object
detection model, EfficientDet [44], consists of a backbone,
neck, and head, among which the backbone takes up most
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(a) MobileNetV2 on Jetson Nano
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(b) MobileNetV2 on smart phone
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(c) MobileNetV2 on 3090Ti GPU
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(d) ResNet50 on Jetson Nano
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(e) ResNet50 on smart phone
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(f) ResNet50 on 3090Ti GPU
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(g) ResNet101 on Jetson Nano
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(h) ResNet101 on smart phone
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(i) ResNet101 on 3090Ti GPU
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Figure 7: The latency-accuracy tradeoffs of models generated by different techniques on the target devices.

of the inference latency (more than 90% according to our
measurements), thus we only elasticize the backbones. For
the same reason, we only elasticize the encoder of FPN [30].
Since the official code of our baseline LegoDNN [12] on ob-
ject detection and semantic segmentation cannot run properly,
we implement the training process of LegoDNN [12] on both
tasks. To make fair comparisons, AdaptiveNet and LegoDNN
[12] start from the same pretrained model and train for the
same GPU hours. After training, we randomly sample the
same number (500) of subnets for both tasks and evaluate
them on the test set.

The results are shown in Figure 8. Similar to the classi-
fication tasks, AdaptiveNet achieves reasonable scaling per-
formance and outperforms the baseline. Some of the FPN
subnets can even achieve better tradeoffs than the original
pretrained model, which is because the original model is over-
fitted. Our subnets generated by merging some original blocks

Figure 8: Quality of models generated for detection and
segmentation tasks.

together can reduce the parameter size of the original model,
which reduces over-fitting and improves accuracy.

7.4 Impact of Edge Data Distribution Shift
Since AdaptiveNet generates the model directly on the target
device, it can utilize edge data as compared with on-cloud
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Figure 9: Quality of models generated by AdaptiveNet on different edge data distribution in comparison with cloud-
generated oracle models (Latency measured on NVIDIA 3090 Ti GPU).

Figure 10: Training efficiency of on-cloud elastification.

NAS. We examine the quality of models generated by Adap-
tiveNet on different edge datasets simulated with Dirichlet
distributions. The results are shown in Figure 9.

We notice that AdaptiveNet can outperform the Efficient-
NetV2 models that are generated by extensive on-cloud NAS
[43] on unbalanced edge data distributions. Some of the sub-
nets may improve the top-1 accuracy by 1.07% while saving
7.71% latency at the same time, which is a hard-won im-
provement since the original model has achieved excellent
performance (with 86.99% top-1 accuracy and 5.03ms la-
tency). We also observe that the advantage of AdaptiveNet
increases when the data distribution is more unbalanced.

Given the fact that the edge data distributions are usu-
ally different from training ones [23], we believe the post-
deployment model generation mechanism of AdaptiveNet is
a more promising direction to seek in edge AI scenarios.

7.5 On-cloud Training Performance
We examine the efficiency and effectiveness of our on-cloud
elastification stage. We compare our supernet training method
with a supervised training baseline (i.e. our method without
distillation) and a distillation-only baseline (i.e. our model
without whole-model tuning) and plot the progressive top-
1 accuracy on ImageNet in Figure 10. Although all of the
training methods can converge after 50 epochs, our two-step
training technique is 7.15% and 7.84% higher than using
supervised training only and distillation only. Our supernet

Figure 11: Speed of evaluating a group of subnets.

Figure 12: Comparison of search efficiency between dif-
ferent methods.

training also converges faster than the baselines with only
60 epochs (about 13 hours), which is also significantly faster
than on-cloud NAS (>1200 GPU hours [2]).

7.6 On-device Adaptation Efficiency
In this section, we evaluate the performance of the on-device
search in AdaptiveNet. Most of the subnet search methods
in conventional NAS are too heavy for edge devices (e.g. re-
inforcement learning [31, 67] and gradient-based methods
[3, 33]). So we choose normal evolutionary search [38] and
simulated annealing [32] as our baselines. To examine the
effectiveness of our method, we conduct two ablation exper-
iments and one end-to-end experiment. All the experiments
use the same 500 images for searching.

Figure 11 shows the acceleration percentage of our reuse-
based model evaluation method (Section 5.2). We compare the
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Table 3: Size (MB) of AdaptiveNet-generated supernets
and their corresponding pretrained models.

Model Pretrained model Supernet

MobileNetV2 14.20 32.88
ResNet50 102.48 381.66

ResNet101 178.71 503.82

time spent to evaluate 50, 100, and 200 subnets respectively.
Our method saves up to 56.7% and 36.2% of search overhead
compared to normal evaluation pipeline, and consumes 100-
500MB of memory. It is notable that the memory cost of our
method is controllable by adjusting the depth of the subnet
tree. If there is no space for feature maps, we can set the depth
to 0, which will reduce the GPU memory overhead to zero
with some sacrifice of search efficiency.

Figure 12a shows the benefits of our model-guided search
strategy. To achieve the same average accuracy, AdaptiveNet,
evolutionary algorithm, and simulated annealing need to try
800, 3100, and 1800 subnets respectively. Figure 12b shows
the end-to-end search efficiency comparison between Adap-
tiveNet and baselines on NVIDIA 2080 Ti. We conduct three
individual experiments with a population size of 50, 100, and
200, respectively, and show the best results for each strategy.
AdaptiveNet, simulated annealing algorithm, and evolution-
ary algorithm to find optimal subnet in 117.6, 765.6, and
1656.9 seconds respectively, indicating that our method can
improve search efficiency by more than 80%.

Network transmission overhead. Table 3 shows the size
of AdaptiveNet and pretrained models. Although AdaptiveNet
increases the size of models, we believe it can actually save
network overhead. AdaptiveNet only needs to transmit the
supernet to edge devices once, which is 1.32×-2.72× larger
than the original pre-trained model. However, to achieve simi-
lar performance, conventional model deployment approaches
have to collect device information and re-transmit the model
when the edge environment changes, which is 𝑛× larger than
the original model, where 𝑛 is the time of changes.

Real-time Model Update Efficiency. We further test the
performance of our dynamic model update module and present
the result in Figure 13. We choose ResNet50 [16] as our pre-
trained model and the experiment is conducted on NVIDIA
2080 Ti. We adjust the GPU usage by running and killing Mo-
bileNetV2 inference processes. Our dynamic model update is
fast and responsive. After the latency budget is exceeded or
under-utilized, AdaptiveNet can find the optimal model and
recover the latency within 1 second. Specifically, we obtain
a pool of optimal subnets for a range of latency budgets dur-
ing the on-device search. The runtime update module only
needs to switch to the proper model, instead of searching from
scratch. Thus, it should be easy for our method to catch up
with the workload dynamics.
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Figure 13: Demonstration of dynamic model update.

8 DISCUSSION
An issue that may be a concern in the on-device model genera-
tion is the need for labeled edge data, which might be difficult
if the data is not auto-labeled (like in many unsupervised
tasks [15, 60]). Such a dataset can be generated by querying
an oracle model with unlabelled edge data. Letting the cloud
send public data to the edge is also an option, although the
edge data characteristics will not be utilized in this way.

Although AdaptiveNet is mainly evaluated on vision tasks,
it should be able to generalize to other tasks such as NLP.
Transformer models [45] are also composed of repeated blocks
such as encoders and decoders, so we should be able to elasti-
cize them into supernets and choose the optimal subnet from
them at edge devices.

We also want to discuss the relationship between Adap-
tiveNet and on-device training, which can be used to improve
model quality after deployment. First, on-device training typ-
ically requires heavy computation and sufficient training data
to be effective, which AdaptiveNet does not require. Besides,
on devices with good training conditions, a better architecture
found by AdaptiveNet can also be beneficial.

9 CONCLUSION
This paper proposes a novel approach for on-device, post-
deployment, and environment-aware model architecture gen-
eration. The approach is implemented as an end-to-end system
equipped with on-cloud model elastification and on-device
model adaptation techniques. Experiments have demonstrated
the remarkable model quality and model generation efficiency
of our method. Developers can scale their AI applications to
diverse and dynamic edge environments with our system by
simply specifying a pretrained model.
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