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Abstract—WiFi-based human activity recognition is a promis-
ing sensing application in smart homes due to the low cost, wide
availability, and privacy preservation of WiFi devices. However,
pushing WiFi sensing technology to industry-scale deployment is
difficult due to its poor robustness against environment differ-
ences. How to systematically test such sensing system is crucial
to improve its practicality, and is also challenging because the
sensing performance is significantly influenced by the underlying
physical environments. In this paper, we introduce the problem
of testing environment-dependent sensing systems, including how
to measure test coverage and how to effectively generate data to
improve the coverage. We describe our initial attempts on exam-
ining test sufficiency with environment-neuron joint coverage and
improving the coverage through targeted environment variations
and signal transformations. Our experiments have demonstrated
the higher effectiveness of using environment-neuron coverage to
represent test sufficiency, as compared with using the conven-
tional neuron coverage. Meanwhile, the coverage-guided sensing
data generation can lead to higher accuracy of the sensing system
under changing environments.

Index Terms—Smart home, software testing, WiFi sensing,
deep learning, environment dependency.

I. INTRODUCTION

Recent years have witnessed rapid progress of wireless
communication technology and large-scale adoption of WiFi-
based IoT devices. It is widely known today that the digital
signals transmitted and received by these devices can be used
to sense our states and activities [8], which enables many use-
ful smart-home applications such as gesture recognition, sleep
monitoring, fall detection, etc. Meanwhile, recent advances
of artificial intelligence (AI) and deep learning (DL) make it
much easier to develop sensing applications by training models
with the wireless signals.

However, pushing WiFi sensing technology to commercial-
ization still faces several important challenges, a major one of
which is the robustness of the sensing system in diverse and
dynamic smart-home environments. Specifically, when using
wireless signals in smart homes for user activity recognition,
the difference between homes and the change of furnitures
may lead to significantly different sensor readings [20], [1].
It is difficult even impossible for sensing service providers
to manually develop a model for every home, while the
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models developed in one environment (e.g. the developers’
laboratory) are usually unable to achieve acceptable accuracy
in other environments (e.g. the end-users’ homes). How to
systematically test the smart-home WiFi sensing system is
crucial for understanding the limitations of a sensing system
and improving it accordingly.

Unlike traditional software that can be tested with random
inputs to achieve high coverage, the robustness of sensing
systems can only be measured with realistic sensor signals.
Generating fake and random sensing readings would lead
to meaningless test results. Existing work has also explored
various data generation techniques to test learning-based sys-
tems such as self-driving car and machine translation [10],
[9]. However, these techniques can hardly be applied to test
smart-home sensing systems, because the sensor signals are
much less human-understandable as compared with images or
natural language sentences.

To this end, we focus on the problem of robustness testing
for smart-home sensing systems. The challenges of testing
sensing system include two main aspects. First, it is unclear
how to systematically evaluate the test coverage so that the
coverage value can reflect the system performance in actual
environments. Second, due to the special characteristics of
sensing signals, it is difficult to effectively generate data
to improve the coverage and therefore enhance the system
robustness.

As an initial attempt to address the above problem, we pro-
pose to use environment-neuron joint coverage to measure test
progress instead of conventional neuron coverage. Specifically,
the test coverage is represented as a product of the neuron
coverage on each environment property, where the weight is
determined by the distribution of the property values in real
world. Guided by this coverage metric, developers can make
more informed decisions when determining new environments
for data collection. Additionally, we introduce techniques
to improve the test coverage through domain-specific signal
transformation techniques, including window-shifting transfor-
mations and frequency-scaling transformations.

We evaluate our solution on a popular public dataset named
Widar3.0 [20]. The results have shown that the environment-
neuron joint coverage can more effectively describe the test
progress since it can better reflect the reliability of sensing
system in real deployment. Meanwhile, our coverage-guided



data generation techniques can improve the test coverage by
19.13%-35.29% and improve the cross-environment sensing
accuracy by 11.78%-16.70%.

The contributions of this work include:
1) We introduce the problem of testing smart-home sensing

systems, which provides a new perspective of software
testing where the software behavior is highly dependent
on the underlying environments.

2) We introduce the environment-neuron joint coverage to
measure test coverage for smart-home sensing systems,
which is a more approperiate criterion than conventional
neuron coverage.

3) We introduce a data generation technique based on
coverage-guided new environment determination and sen-
sor signal transformation, which helps improving test
coverage and lead to more robust sensing systems.

II. BACKGROUND AND RELATED WORK

A. Smart-home WiFi Sensing

Using WiFi signals for sensing has become a popular
research direction for a long time [8]. Specifically, WiFi-based
human activity sensing in smart homes is believed to be a killer
application. The common practice of WiFi sensing is to obtain
WiFi signals with two connected devices (a transmitter and a
receiver), extract the Channel State Information (CSI) from
the WiFi signals, transform it, and use deep learning (DL) to
convert the information to high-level predictions.

It has been demonstrated that human states such as running
and walking can be detected based on the amplitude informa-
tion of CSI [22], [14], and the human movement can be ob-
tained by analyzing the CSI value dynamics [12]. The Fresnel
zone model [16] proved the sensing feasibility of decimeter-
scale activity recognition by WiFi signals theoretically. The
WiFi signals can be further processed to extract information
that better depicts human activities. A typical example is the
Doppler frequency shift (DFS) [4], [20], which is obtained
by transforming CSI from time domain to frequency domain.
The sensing system in our work is also based on the DFS
information.

A major challenge of wireless sensing is the high en-
vironmental dependence of wireless signals, i.e. the sensor
readings for the same activity in different environments may
be significantly different. To address this problem, researchers
have adopted various domain adaptation techniques to gener-
alize sensing systems across different environments [1] or in-
troduced domain-independent representations to better depict
human activities [20].

Unfortunately, pushing WiFi-based deep sensing technology
to commercialization is still difficult. One of the major obsta-
cles is the lack of standard and effective testing methods in
this field.

B. Deep Learning Testing

Deep WiFi sensing system is a special type of software
based on deep neural networks (DNNs), while how to test

and improve the quality of DNN-based systems is a rapidly-
developing research direction in the software engineering (SE)
community. In recent years we have witnessed ongoing efforts
in the SE community to measure and enhance the robustness
of DL models through testing. The main research topics in this
domain include (1) how to measure the test coverage for DL-
based applications and (2) how to generate inputs to improve
the test coverage.

The most widely-used test criterion for measuring test
coverage of DL models is neuron coverage [9], which is
represented as the ratio of activated neurons among all neurons
in the model. Based on neuron coverage, researchers have
further introduced more fine-grained metrics [6] such as K-
multisection neuron coverage and neuron boundary coverage.
Researchers have also discussed the effectiveness of neuron
coverage in DNN testing [2], [15], [13].

To maximize test coverage, various techniques are devel-
oped to synthesize inputs to thoroughly test the DNNs [17],
[10], [21]. Another line of work tries to probe the boundaries
with test inputs and understand when the model could yield
erroneous prediction [3], [18], [11], [5], [7]. This analysis
can be done by assessing the models’ uncertainty [18], [7],
detecting out-of-distribution (OOD) data [3], [11], [19], or
directly predicting the failure of the AI system [5].

These techniques are mostly designed for computer vision
or natural language processing applications, while the unique
environment-dependent characteristic of sensing applications
is rarely discussed and addressed.

III. ENVIRONMENT-AWARE TESTING

A. Problem Description

We first introduce the problem of smart-home sensing sys-
tem testing. The goal of testing is to understand and enhance
the reliability of the target sensing system across different
environments of deployment. Specifically, the performance of
the sensing system in one environment e can be measured
by its sensing accuracy acce (i.e. the correctness of predicted
human activities in the environment). The reliability across
different realistic environments is represented as accEreal

=
Ee∈Ereal

acce, where Ereal is the set of real-world sensor
deployment environments (e.g. all end-user homes). However,
measuring the sensing performance in each e ∈ Ereal is
difficult even impossible in practice. Instead, we usually only
have access to a small subset of test environments Edev that
are controlled by the developers. Thus, we need an easy-to-
obtain testing criterion to estimate the reliability of the target
sensing system in the wild, and guide test input generation to
achieve higher reliability.

Due to the huge environment dependency of WiFi sensing
systems, the conventional neuron coverage may not be a
satisfactory criterion, since it may lead to over-approximation
of test adequacy. Specifically, the extensive sensor data in
a single environment may produce high neuron coverage in
the model, but it may not cover diverse data distributions
in different environments. Therefore, a more domain-specific
metric to measure test adequacy of sensing model is needed.



Meanwhile, how to maximize the test coverage with limited
time and labor effort is also an important question in sens-
ing system testing. Unlike most traditional software systems
whose inputs are semantically understandable and can be man-
ually constructed, the inputs of the sensing systems are sensor
signals that can only be produced in certain environments.
Thus, generating data for sensing systems requires wisely
determining the testing environments and better utilization of
the data in the limited environments.

The overview of our solution is shown in Figure 1. The main
components of the solution include a new coverage criterion
(environment-neuron joint coverage) and a coverage-guided
input generation method. The details of the two components
are described below.

B. Environment-Neuron Joint Coverage

The purpose of environment-neuron joint coverage is to
describe not only the test coverage of cases that may be
encountered in a certain environment, but also the cases that
may be found in different environments. In this way, the
joint coverage can more precisely reflect the robustness of the
smart-home sensing system in different environments.

To obtain the environment-neuron joint coverage, the sens-
ing model M should first be tested in several existing environ-
ments Edev that are controlled by the developer. Suppose the
dataset in each environment e ∈ Edev is De, we use CNe to
denote the neurons covered in environment e by feeding De

to model M , i.e. CNe = covered neurons(M,De).
Next, for each environment e ∈ Edev , we analyze its

covered properties in real environments. Specifically, devel-
opers should understand the environment properties that may
affect the data distribution of sensing signals. For example,
the important environment properties in WiFi sensing include
the location and orientation of the target user, the distance
and number of obstacles between the transmitter and the
receiver, the number of other moving objects in the room,
etc. Suppose the distribution of all environment properties is
P = {P1, P2, ..., Pk}, where k is the number of properties and
each Pi is the distribution of the values of a certain property,
i.e. Pi(p) is the probability of the i-th property having the
value p in real environments. Based on the definition of
properties, we can characterize each environment e with the
property values pe = {pe1, pe2, ..., pek}.

Combining the covered neurons and covered properties in
each environment, we can obtain the covered neurons for each
value pi of environment property Pi as

covered neurons(pi, Edev) =
⋃

e∈Edev and pe
i=pi

CNe (1)

Then the test coverage for each environment property can be
calculated as

coverage(Pi, Edev) =∑
pi∈Pi.values

Pi(pi)
covered neurons(pi, Edev)

total neurons(M)
(2)

Finally, the overall coverage can be obtained by

coverage(P,Edev) =
∏

Pi∈P

coverage(Pi, Edev) (3)

Such a coverage criterion can handle the diversity of real
environments and reflect the test sufficiency of the sensing
system in actual deployment.

C. Coverage-guided Input Generation

Guided by the environment-neuron joint coverage, we can
strategically generate sensing data to improve the coverage and
consequently enhance the reliability of the sensing model in
real deployment environments.

First, the coverage metric can guide the developers on the
determination of new environments for data collection that
can help achieve higher coverage more efficiently. Specifically,
suppose the developers have the budget to create one new
environment for data collection. Instead of arbitrarily choose
an environment, an ideal choice is a new environment that
can more easily lead to the improvement of overall test
coverage, i.e. enew = argmaxe′coverage(P,Edev ∪ {e′}).
Directly solving this equation is infeasible because the covered
neurons in new environments are unknown in advance, so we
heuristically choose the environment with the most important
(common in real environments) but less-covered environment
property values.

Second, in each test environment e ∈ Edev , developers can
augment the sensor data to obtain higher coverage. Based
on the insight that the prediction of human activity should
remain consistent in a small duration of time or with slightly-
different movement speed, we propose to generate meaning-
ful sensing signals from existing signals with time-domain
transformations. Specifically, an activity sample is collected
at 1000Hz for about 3 seconds, and we can get a sequence
of sensor signals {xt, xt−d, ..., xt−Nd} through fixed interval
sampling, where t is the end time of the activity and d is the
interval between successive sensor readings. Since the starting
position and interval of sampling do not directly affect the
overall features of the activity, We can further obtain more
samples for the same activity as {xt′ , xt′−d′ , ..., xt′−Nd′},
where t′ = t + ∆t and d′ = σd are slightly and randomly
shifted end time and scaled sampling duration. In this way,
the same activity segment can be used to generate multiple
samples which greatly increases the diversity of data. In our
experiment, we generate more than 10x data samples from
existing data with this technique.

IV. EVALUATION

A. Experiment Setup

We conduct experiments with a public dataset named
Widar3.0 [20], which contains the WiFi sensing data sam-
ples corresponding different gestures obtained in multiple
environments across different rooms. Each environment in a
room is characterized by two properties, i.e. the location and
orientation of the user. There are 25 combinations (5 locations
and 5 orientations) in total in each room. We create three



Fig. 1: The overview of our testing framework.

TABLE I: The correlation between different coverage metrics
and actual performance. Edev represents the number of envi-
ronments used by the developer to train and test the model.
Accdev and Accreal are the sensing accuracy achieved in the
development environments and real environments. “Neuron
Coverage” is the conventional coverage metric [9] and “Joint
Coverage” is our proposed environment-neuron joint coverage.

Edev Accdev Accreal Neuron Coverage Joint Coverage

3 envs 97.62% 48.45% 98.24% 15.41%
6 envs 94.05% 49.54% 98.63% 62.26%
9 envs 95.24% 59.82% 98.63% 77.83%

environments with 3, 6, and 9 random location-orientation
combinations in one room respectively as the development
environment Edev . All location-orientation combinations in
another room are regarded as the real environments Ereal. We
use 90% random data samples in Edev to train the sensing
model for 100 epochs to ensure convergence. The other 10%
samples are used to test the model and measure test coverage.
The actual performance of the sensing model is measured on
the real-environment (Ereal) samples. The performance metric
is classification accuracy. Specifically, we selected the samples
of six gestures (Slide, Swipe, Push&Pull, Clap, Draw-Z, and
Draw-O) and examine how accurately the models can predict
the gesture for each sensor data sample.

B. Effectiveness of Environment-Neuron Joint Coverage

We first evaluate the effectiveness of our coverage metric
in comparison with the conventional neuron coverage metric.

Table I shows the correlation between the accuracy in real
environments Accreal and different metrics. First, the accuracy
in test environments (Accdev) is high (all above 94%) in all
environment settings, but it is not closely related to the actual
performance (Accreal). This is because of the data distribution
difference between test environments and real environments.

The neuron coverage is also not a good indicator of the
sensing performance in real world. Specifically, the neuron
coverage values are almost equally high (above 98%) for
different Accreal values. The main reason is that the sensing
data is diverse while the sensing model is relatively small,
making it easy to achieve a high neuron coverage.

Instead, the environment-neuron joint coverage proposed by
us is much more correlated to the real-environment accuracy,
where a higher joint coverage can constantly map to higher
Accreal. This demonstrates the effectiveness of new tailored
coverage metric as an indicator of the cross-environment
robustness of sensing models.

C. Effectiveness of Input Generation
Then we evaluate the effectiveness of our input generation

method by analyzing the accuracy improvement produced by
our newly generately inputs.

Specifically, we use the input generation method described
in Section III-C to determine a new environment to augment
the test environments Edev and transform the sensor data in
the environments. As a baseline for comparison, we include
a normal input generation method which randomly picks a
new environment, obtain data samples from it in the same
as the existing environments in Edev . We use both methods
to generate the same amount of data and train the sensing
model with the augmented datasets. The input generation
effectiveness can be analyzed based on the change of accuracy
and coverage produced by the generated data.

As shown in Table II, after training the sensing model with
our generated inputs, the accuracy in real environments is
improved by 11.78%, 15.29%, and 16.70% in all three de-
velopment environment settings. As a comparison, the normal
input generation method only leads to less than 4% accuracy
improvement, and it may even harm the accuracy in some
cases (probably due to training unstability). The accuracy in
development environments Edev is not significantly influenced



TABLE II: The improvement of accuracy and coverage
achieved with our coverage-guided input generation method.
Method represents different input generation.

Edev Method Accdev Accreal Joint Coverage

3 envs
Original 97.62% 48.45% 15.41%

Normal Input Gen 100% 51.80% 23.13%
Our Input Gen 96.30% 60.23% 34.54%

6 envs
Original 94.05% 49.54% 62.26%

Normal Input Gen 96.88% 48.45% 62.51%
Our Input Gen 97.92% 64.83% 97.55%

9 envs
Original 95.24% 59.82% 77.83%

Normal Input Gen 97.22% 62.82% 77.83%
Our Input Gen 100% 76.52% 97.28%

by newly generated data, which is not a problem since it is
not very relevant to the real-world sensing performance.

Similarly, the environment-neuron joint coverage is im-
proved by up to 35% after augmenting the dataset with our
input generation method, while the improvement produced by
normal input generation is far less significant. This demon-
strates the effectiveness of our input generation method.

V. CONCLUSION

We introduce to the SE community the problem of testing
deep sensing systems in the smart-home industry. We highlight
the unique challenge of environment dependency in such sys-
tems and propose preliminary solutions to this challenge. After
demonstrating the effectiveness of our proposed environment-
neuron joint coverage and coverage-guided sensing input gen-
eration, we expect there is further room for improving the
test criterion design and test input generation method that can
better fit the smart-home sensing system testing problem.
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