
Glider: A Reinforcement Learning Approach to Extract
UI Scripts fromWebsites

Yuanchun Li
Microsoft Research

Beijing, China
yuanchun.li@microsoft.com

Oriana Riva
Microsoft Research
Redmond, WA, USA

oriana.riva@microsoft.com

ABSTRACT
Web automation scripts (tasklets) are used by personal AI assistants
to carry out human tasks such as reserving a car or buying movie
tickets. Generating tasklets today is a tedious job which requires
much manual effort. We propose Glider, an automated and scalable
approach to generate tasklets from a natural language task query
and a website URL. A major advantage of Glider is that it does
not require any pre-training. Glider models tasklet extraction as
a state space search, where agents can explore a website’s UI and
get rewarded when making progress towards task completion. The
reward is computed based on the agent’s navigating pattern and the
similarity between its trajectory and the task query. A hierarchical
reinforcement learning policy is used to efficiently find the action
sequences that maximize the reward. To evaluate Glider, we used
it to extract tasklets for tasks in various categories (shopping, real-
estate, flights, etc.); in 79% of cases a correct tasklet was generated.

CCS CONCEPTS
• Information systems→ Data extraction and integration; •
Computing methodologies→ Reinforcement learning.
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1 INTRODUCTION
Intelligent personal assistants (Google Assistant, Apple Siri, etc.)
perform tasks on behalf of a user based on natural language com-
mands or questions. They usually operate through a two-step pro-
cess: (i) task understanding and (ii) task execution. Task under-
standing uses NLP techniques [27, 32, 58, 74] to extract a task’s
intent and input parameters from a natural language query. For
example, it infers that in the command “Estimate ride fare from 1st
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Ave, New York to Central Park” “estimate ride fare” describes the
user intent and “1st Ave, New York” and “Central Park” represent
the parameters “start location” and “end location”, respectively.
Task execution involves executing the parsed command through
a relevant service. Traditionally, this meant connecting to an API
(e.g., Uber get_price_estimates API), but recent AI assistants have
demonstrated how a task may also be carried out by directly driving
the GUI of a website supporting it [19, 40, 61]. This second option is
appealing because it can give AI assistants access to a set of human
tasks much larger than what traditional service APIs support. In
this paper, we focus on how to make website-based execution of
human tasks more accessible to AI assistant developers.

The web has a long tradition of UI tools that can be leveraged to
automate web task execution [4, 25, 35, 47, 52]. In the simplest sce-
nario, a user can use a record-and-replay tool such as Selenium [52]
to record themselves interacting with a website and obtain a UI
script to replay the interaction. Despite its simplicity, this approach
is time consuming as it requires manually recording every single
task to automate, possibly for every variation of input parameters.
As developers of AI assistants need to automate a wide range of
tasks and websites, the effort would be cumbersome. Moreover,
maintaining UI scripts is generally costly due to website updates.
An alternative option is to train AI agents to automatically carry
out web tasks, possibly described in natural language [19, 40, 59].
However, current solutions can automate only tiny hand-crafted
websites (MiniWob [56]) and still require collecting large amounts
of manual demonstrations to successfully train the agents.

To reduce this overhead and simplify the process of web task
automation, we propose Glider, an unsupervised approach to au-
tomatically generate executable UI scripts for web tasks, which
we call tasklets. The only inputs Glider requires are an English
sentence describing a relevant task and one or more website URLs
where to execute the task. To be compatible with existing AI assis-
tants, Glider assumes a task description is parsed and annotated as
by standard task understanding modules. An example query may
be “Estimate ride fare from 1st Ave, New York [start-location] to
Central Park [end-location]”. Given this query and say the website
lyft.com, Glider’s goal is to automatically generate a tasklet that
takes as input the pick-up and drop-off locations, inputs them in
the corresponding text boxes, clicks the “get estimate” button, and
returns the price list page. Tasklets resemble familiar Selenium UI
scripts and can be replayed using the Selenium web driver [53].

Glider models the problem of automatically generating tasklets
as a state space search. A website is represented as a set of states
(webpages) and actions (interactions with buttons, lists, menus, etc.).
An agent searches the space by taking some actions to reach a goal
state (i.e., task completion). Actions are rewarded based on their
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progress towards task completion. When the goal state is reached,
the sequence of actions taken is encoded as a tasklet.

To make search practical in real websites without requiring
pre-training or website modifications, Glider must deal with two
challenges: (i) how to efficiently navigate the large search spaces as-
sociated with websites, and (ii) how to determine progress towards
task completion without prior knowledge of the task or website.

The search space is large because the DOM tree of an average
website contains hundreds of UI elements, many of which are in-
teractable. A search agent can click any link, button, list, etc., thus
making the number of possible trajectories extremely large. Our
first intuition to solve this problem is that a successful search strat-
egy shouldmimic as much as possible human behavior. For example,
in western languages, we typically read a page and take actions
left-to-right and top-to-bottom (directionality pattern) and do not
“jump” around a page (locality pattern). Whenever possible, Glider
automatically hides from the agent “misleading” actions, and emits
negative rewards based on locality and directionality patterns.

The second challenge is about determining progress towards
completion of a task in a generalized way, which is notoriously
hard [71]. If we consider the example task “Translate the word cat to
Spanish” an agent may be rewardedwhen after some UI interactions
the word “gato” is found on the page; this reward is task-specific,
but holds true across websites. In another task, such as making a
restaurant reservation, the reward may be determined based on the
final confirmation message; such a message is generally unknown
beforehand and different for different restaurant websites, hence
in this case the reward strategy is task- and website-specific. In
summary, inferring how a task is progressing towards completion
usually relies on task- or website-specific hints, but relying on them
would require manual effort and conflict with our scalability goal.
We address this problem by computing rewards based on the text
similarity between the states (webpages) visited, the navigation
path (the UI actions executed so far) and the task description.

Locality, directionality and text similarity are the cornerstones of
Glider’s reward model. However, as these types of reward are noisy
and known only after an action is executed (e.g., an action may
trigger content updates necessary to compute similarity), Glider
cannot adopt classical search algorithms or rely on basic backtrack-
ing (e.g., the web client’s state may not be reproducible). Instead,
Glider relies on reinforcement learning [43, 44, 57, 67] as a search
strategy. The strategy is formalized as a hierarchical policy [31], in-
cluding a master policy that controls navigation between pages and
a sub-policy that determines inputs for forms in a page. Finally, to
further deal with noisy rewards, in a post-processing phase, Glider
replays the highest-rewarded tasklets, and corrects them by remov-
ing unnecessary actions or injecting others. We evaluated Glider by
building a dataset of 164 tasks and collecting 44 more from actual
developers. Overall, Glider generated a correct tasklet in 79% of
cases, while baseline approaches achieved 56–60% success rates.

In summary, this paper makes three contributions: (i) an un-
supervised approach for generating UI automation scripts from
natural language inputs; (ii) an implementation based on reinforce-
ment learning that unlike current solutions [19, 40, 59] works on
real websites; and (iii) an evaluation based on a new dataset of 208
tasks across 10 task categories. We make code and dataset available
at https://github.com/microsoft/glider_tasklet_crawler.

2 GOAL AND CHALLENGES
Glider’s overall goal is to enable developers to generate tasklets for
real websites and automatically. By “automatically” we mean that
Glider should not require developers to collect manual demonstra-
tions for pre-training and that Glider should not need to be tuned
or customized to work on new tasks and websites.

A Glider-generated tasklet resembles a traditional Selenium UI
script [52], consisting of a sequence of commands for performing
actions in a web browser (click a button, select an item, type text in
an input field, etc.). Glider aims to generate correct tasklets, meaning
those that lead to task completion. For efficiency, we prefer short
execution paths and reject paths that exceed a maximum number
of steps computed based on the task complexity (see §4.1). On the
other hand, we do not require a shortest path for correctness. For
instance, in a shopping website one may find a product by searching
its name or by navigating the product catalog.

We envision developers can write task queries directly (as in
our developer study), obtain them by processing user logs with
task understanding techniques [27, 32, 58] or crowdsource their
collection. As in AI agents for web navigation [19, 40], we assume
query parameters are annotated. A task’s target websites can be
specified manually or obtained from web traffic ranks (alexa.com).

To meet its goal, Glider must deal with two challenges: (i) how to
search the large action spaces of websites, and (ii) how to estimate
progress towards completion of an arbitrary task.

Large UI trees. The number of available actions (interactable UI
elements, such as buttons, menus, links, etc.) in a webpage can be
in the order of one hundred. In our tests, a webpage had on average
76 actions. For a task of 3–5 steps (a step represents a UI action)
and a webpage with 76 actions, the probability of randomly finding
a correct execution path is in the range [10−10, 10−6]. To illustrate,
we took one of the simplest website in our dataset which is an
electronic medical record website [45], and considered the 4-step
task “Lookup cancelled [appointment status] dermatology [service
type] appointments at laboratory [location]”(see Figure 1). We first
tried to discover an execution path for the task using a simple
Random Walk approach that randomly selects actions. We gave it
as entry point the start page of the website and executed it for 100
episodes where in each episode the maximum number of allowed
actions was 10. We inspected the captured traces and found no
correct path for the task. Only by increasing the number of episodes
to 500 (which took over 2.5 hours) it was able to succeed at episode
358. In comparison, Glider found a correct path after 39 episodes.

How to deal with the large action spaces of websites is a known
problem. Recent work on training reinforcement learning agents
for web navigation [19, 40] uses hand-crafted test cases [56] which
are smaller (160×210 pixels) and simpler (10–50 UI elements per
page) than actual websites. We apply Glider to real websites and
address this issue by computing partial rewards based on locality
and directionality (§3.2) and by adopting a hierarchical policy (§3.3).

Reward model. Even when Random Walk is able to generate a
correct path, the question is how to recognize it among the many
visited paths. A current approach consists of comparing the DOM
tree of each visited webpage with that of the “goal” page (i.e., the
page at task completion) [19]. However, this approach cannot scale
because (i) a goal page’s DOM tree has to be captured in advance
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Figure 1: The 4-step task “Lookup cancelled dermatology ap-
pointments at laboratory” in our test medical website [45].

q
Estimate ride 
fare from 1st 
Ave, New York 
[start location]
to Central Park
[end location].

url
www.lyft.com/fa
re-estimate/

TASKLET-1  Total_reward: 27.55
type(eEnter pick-up location, 1st Ave, New York) 
type(eEnter drop-off location, Central Park)
click(eget estimate)

TASKLET-2 Total_reward: 26.45
type(eEnter drop-off location, Central Park)
type(eEnter pick-up location, 1st Ave, New York) 
click(eget estimate)

type(“Enter pick-up location”,
“1st Ave, New York”)

type(“Enter drop-off location”,   
“Central Park”)

click(“get estimate”)

Top k tasklets

Final page 
screenshots

Figure 2: Tasklet discovery for the fare estimate task in
lyft.com. The output is a ranked list of k tasklets.

and for every target website, and (ii) websites are dynamic so DOM
trees change all the time. Another option is to rely on specific texts
or images appearing only in the goal page. For example, the task
“Convert 10 kg in pounds” could be deemed completed when the
number “22.0462262” is detected. This approach, however, can work
only for few task categories where the output is deterministic, such
as unit conversion or dictionary tasks. Finally, by collecting many
instances of pages obtained at completion of the same task in mul-
tiple websites, one could train a prediction model for task comple-
tion [71]. However, building this dataset would require lots of effort.
To be low-effort, Glider adopts a task- and website-independent
reward model that constantly evaluates the similarity of the visited
webpages and executed actions with the task query (§3.2).

3 OUR APPROACH: GLIDER
Figure 2 gives a high-level overview of Glider. Given q, an Eng-
lish sentence describing a task, and a website url , Glider returns
maximum k tasklets (e.g., k = 5) ranked by a confidence score. To
assist developers, for each generated tasklet Glider also returns a
screenshot of the webpage obtained upon its execution, and allows
developers to replay the tasklets to obtain a preview.

Once the pair <q,url> is specified, the whole process (Figure 3)
is automated. Glider searches the target website to find one or more
tasklets that satisfy q. A website is represented as a state space (§3.1),
in which the action sequences are rewarded by a reward model
(§3.2) based on their progress towards task completion. The search
is carried out by a reinforcement learning agent (§3.3). In the last
step, the agent’s learning episodes are post-processed to maximize
output correctness (§3.4). We describe each step next.

3.1 Problem definition
Glider’s input queries are natural language sentences with one
or more parameters p and with annotations pann for each p. In

q, url

ai

si, reward
Task execution 
environment

web browser
Reward 
model

Reinforcement 
learning agent

k tasklets
State space search

Post-
processing

Figure 3: Glider overview.

the example query “Estimate ride fare from 1st Ave, New York [start
location] to Central Park, New York [end location]”, each pann (in
square brackets) is a term classifying the associated p (underlined).1

Each website is represented as a finite state machine <W ,A>,
whereW is the set of states and A is the set of actions that can
lead to state transitions. A state w ∈ W corresponds to a page
in a website, wherew0 is the start page. Webpages with different
DOM trees or different content (e.g., a different value typed or
selected in a UI element) are regarded as different states in <W ,A>.
Each w is represented by its DOM tree wdom and a screenshot
wscreen . Each node inwdom corresponds to a UI element e in the
webpage uniquely identified by its xpath. From the DOM tree we
extract various properties of e : (1) eloc , its location represented as a
rectangle in the page; (2) etype , whether the element is “clickable” or
“editable” inferred from various HTML tags (<p> for text elements,
<img> for images, <button> for elements accepting click events, etc.);
(3) etext , whether the element has associated some text inferred
using a combination of HTML attributes (text, placeholder, value,
etc.), as they are not all always available; and (4) ef ont , its font size.

Aw ⊆ A is the set of actions that can be executed in w ∈ W .
Actions can lead to state transitions: clicking a link can redirect to
another page or typing text into a text field can lead to a content
change in the current page. Currently, we constrain the action
space to the following four categories of actions, which have been
sufficient to complete most tasks on the websites we tested.
(1) click(e): clicking on element e , where e must be a clickable UI

element, such as a button, a hyperlink, etc.
(2) select(e ,i): selecting the i-th child of element e; e must be a

<select> DOM element, and i must be smaller than the number
of options in e (e.g., selecting an item from a menu).

(3) type(e ,t ): typing text t into e , where e is an editable UI element
(e.g., text field) and t one or more words in q.

(4) enter(e): submitting the content in e by pressing the “Enter”
keyboard key, where e must be an editable UI element.

We define tasklet(q,url) as a sequence of actions <a1,a2, . . .>
inurl that can complete the task described in q. To discover tasklets,
we define the problem of state space search as follows. At each
time step i , an agent selects an action ai∈ A based on the current
state si∈ S . In response, the environment, a web browser instru-
mented to execute UI actions, returns to the agent a new state si+1
and a reward(si+1,ai ). At initialization, the environment loads url
and passes the initial statew0 and the set of possible actions Aw0
to the agent. The goal of the agent is to learn a sequence of actions
(or tasklet) that maximizes the cumulative reward R.

In the next section we describe how rewards are computed and in
§3.3 we describe our implementation using reinforcement learning.

1We assume these annotations are produced by standard named entity extraction
tools [15, 58]. For flexibility, we avoid tying ourselves to any one specific NLP tool or
ontology. Here, the annotations “pickup”, “origin” or “arrival” would work too.
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3.2 Reward model design
To meet our zero-demonstration and scalability goals, we discussed
earlier how rewards must be computed in a website and task-
independent manner. Our insight is that one can recognize whether
an agent is making progress towards completing a task based on
the current task description, the current state (the content in the
current page) and the sequence of actions executed so far, without
the need to know the expected result of the task. More concretely,
we infer task progress based on the following factors:
• Action locality: when interacting with a webpage, users usually
focus on a small portion of the page at the time, rather than
“jumping” around. In the task “Find cookie recipes” the agent
may try to enter the word “cookie” in a text box and click
the search button next to it; the agent should not click a link
“Cookies, Terms & Privacy” at the bottom of the page.
• Action directionality: as websites are designed for humans, the
placement of UI elements is usually optimized to aid reading
and task completion. For example, in western languages we
read a page from left to right and from top to bottom (also
called Z and F patterns [10]), hence subsequent actions to carry
out a web task tend to flow accordingly.
• Task-webpage similarity: a webpage contains textual content
and actions which also have associated some classifying text
(e.g., a button label); both types of text should semantically
match the task query, including the words specifying the task
intent, parameter values and parameter annotations.

Reward indicators.Wemap the above observations to concrete
task progress indicators that the environment computes upon each
action’s execution. Given a query q with one or more parameters p,
each annotated with pann , the current pagew , and the sequence of
actions so far executed as=<a1,a2, . . . ,ak>, we define:
(1) num_ld : the number of long-distance action pairs in as , mean-

ing subsequent actions whose associated UI elements are lo-
cated at a distance bigger than half of the window’s width or
height (i.e., 500 pixels for 1000×1000 pixels pages).

(2) num_rd : the number of reverse-directional actions in as; if an
action’s UI element is located on the top or on the left of the
UI element of the preceding action in the sequence, the action
is considered reverse-directional.

(3) tasksim : the similarity between words in q (excluding parame-
ters and their annotations) and texts appearing in the current
page w (using a subset of the texts to minimize noise, as de-
scribed later). Rewards based on task similarity are designed
to encourage the agent to navigate to and stay in webpages
relevant to the task’s intent.

(4) parsim (p): the similarity between a parameter p in q and texts
present in the current state w . Rewards based on parameter
similarity are designed to encourage the agent to interact with
UI elements relevant to the task’s parameters.

Similarity scores. To compute text similarity for the last two
reward indicators above, we opted for a conservative approach
based on edit distance. We tested also more advanced semantic
similarity models [8, 55, 58] but they turned out to be “confusing”
for our agent (see §4.3). We define the following similarity function:

sim(t1, t2) = max{sim1−дram (t1, t2), simn−дram (t1, t2),

simdate (t1, t2), simnum (t1, t2)}

where sim1−дram , simn−дram , simdate , and simnum are the sim-
ilarity between the texts t1 and t2 by considering them as single-
word units (1-gram), multi-word units (n-gram), dates, or numbers,
respectively. Specifically, sim1−дram (t1, t2) = 1 − lev_dist (t1,t2)

max { |t1 |, |t2 | }

where lev_dist is the Levenshtein distance [36]2 and simn−дram
is the normalized ratio of words in common to the two input sen-
tences. For dates and numbers we cast to the respective data objects
and use their comparison functions.

Computing similarity between a task query and only the texts
strictly associated with actionable UI elements (e.g., name, place-
holder value, etc.) turned out to be too restrictive. Developers may
not always semantically annotate their UI elements in the DOM
tree or may use generic labels (e.g., a label “Let’s go” for a button
initiating a restaurant search). On the other hand, a webpage may
contain lots of misleading texts hence matching “all” texts in it may
also not work. Hence, we compute similarity using a subset of the
UI elements appearing in the current page w , denoted as w∗. We
say e ∈ w∗ ⊆ w if e is (i) a non-interactable UI element (e.g., title,
text box’s label, etc.) associated with “short” text (defined using
a threshold, to remove item lists or long paragraphs), or (ii) an
interactable UI element which was subject to a previous interaction
in current or previous webpages.

Then, we define the task similarity score as follows:

tasksim = mean
tw ∈q∗

{max
e ∈w∗
{sim(tw, etext )}}

where q∗ is defined as q with parameters and prepositions omitted
and sim(tw, etext ) is the similarity between a task word tw in q∗

and etext , the text associated with e inw∗.
To compute the parameter similarity score parsim for a parame-

ter p, we consider both the parameter value pval specified in the
query and the parameter’s metadatapmetadata (i.e.,p’s annotations
and words surrounding p in q, such as prepositions). Correspond-
ingly, we introduce (i) sv (p, e) = θ ∗ sim(pval , etext ) (scaled by a
factor θ3) and (ii) sm (p, e) = sim(pmetadata, etext ), and define

parsim (p) = max
ei ,ej ∈w∗

{sv (p, ei ) +
sv (p, ei ) ∗ sm (p, ej )

1 + λ ∗ dist(ei , ej )
}

where λ is a hyperparameter to scale the spatial distance
dist(ei , ej ) (it is set to 0.02 by default to scale a window size of
1000x1000 pixels). The intuition behind this equation is the follow-
ing. Besides evaluating whether the name of a UI element matches
a parameter’s annotation or value, it is important to consider the
surrounding context both in the page UI and in the query. This is
especially important when interacting with icons or UI elements
that do not have any labels. More specifically, when considering
the parameter “Central Park” in the example query in Figure 2,
parsim evaluates (i) whether the parameter value pval (e.g., “Cen-
tral Park”) has high similarity with the text of any ei in w∗, (ii)
whether the parameter’s annotation pann (e.g., “end location”) or
any of the surrounding text of pval in q (e.g., the preposition “to”)
has high similarity with the text associated with any ej inw∗, and
(iii) whether ei and ej correspond to UI elements that are spatially
close (e.g., whether the drop-off location text box in the webpage
2t1 and t2 are lemmatized before comparing. Words with different first letters have
zero similarity (e.g., “weight” vs. “eight”).
3θ is a hyperparameter aimed to avoid typing or setting parameter values into UI
elements greedily, to gain more rewards. It is 0.7 if e is a text field and 1.0 otherwise.



task = Estimate ride fare from 1st Ave, New York [start location] to Central Park [end location]
url = https://www.lyft.com/fare-estimate

Reward indicators:
0.  -1.0 * [step_count]
1.  -2.0 * [spatial_distance]
2.  -2.0 * [reverse_direction]
3.   5.0 * [task_similarity, ['end location', 'estimate', 'ride fare', 'start location']]
4. 10.0 * [parameter_similarity, '1st ave, New York', {'from', 'start location'}]
5. 10.0 * [parameter_similarity, 'Central Park', {'end location', 'to'}]

tasklet_trace (total reward = 27.55)
type(e_(Enter pick-up location), 1st Ave, New York)  r:12.20 tot:14.35 [1.00,0.00,0.00,0.43,1.32,0.00]
type(e_(Enter drop-off location), Central Park)          r:12.20 tot:26.55 [2.00,0.00,0.00,0.43,1.32,1.32]
click(e_(Get estimate))                                                    r:1.00   tot:27.55 [2.00,0.00,0.00,0.63,1.32,1.32]

replay_trace:
type(1st Ave, New York) @ id("estimate")/div[1]/div[1]/…
type(Central Park) @ id("estimate")/div[1]/div[1]/…
click @ id("estimate")/div[1]/div[1]/…

Figure 4: Rewards computed for the “Estimate ride fare” task
in Figure 2. Partial rewards (r), total rewards (tot) and break-
down across reward indicators are reported.

appears next to a label “to” and whether in q the word “to” precedes
the drop-off value “Central Park”).

Reward function. Using the reward indicators, we define the
cumulative reward function R(q,w,as) as follows:

R(q,w,as) =wdist ∗ numld +wdir ∗ numrd +wtask ∗ tasksim

+wpar ∗ Σ
p∈P

parsim (p) − k

where P is the set of parameters in q, and wdist<0, wdir<0,
wtask>0 and wpar>0 are weights that we empirically learn (see
§4.3). The discount factor k is a step penalty that encourages the
agent to discover short paths; k is set to 1 for each action taken
except for “submit” actions (including enter actions or interactions
with UI elements with the HTML tag submit, as they are usually
the last action in an execution). After every action taken by the
agent, the environment returns a partial reward computed as the
increment of the cumulative reward, i.e., the reward for the i − th
step is ri = R(q,w,asi ) − R(q,w,asi−1). Figure 4 shows an example
of such reward computation.

In the case of tasks spanning multiple webpages, if the last-
executed action led to a page transition, the reward accumulated
so far is adjusted as follows. If the action that caused the page
transition is a “submit” action, then it is assumed that the agent is
making progress towards completing the task, hence the reward
accumulated so far is kept. Otherwise, it means that the agent has
dropped the ongoing task, thus the accumulated reward is cleared.

3.3 Reinforcement learning agent
We now describe how Glider searches the state space using the re-
wardmodel above. The design of the search approach was guided by
two requirements. First, our state space is only partially visible and
the reward of an action is known only after an action is executed,
thus the search algorithm must work in an exploration-exploitation
manner, i.e. collecting information by randomly exploring the web-
site to guide the selection of future actions. Second, backtracking
and jumping between different states is expensive because a web-
page’s client state may be associated with a server state that cannot
be reproduced; hence, local search (e.g., Hill climbing) is preferred
over uniformed search (e.g., depth-first, breadth-first, etc.).

Algorithm 1: LearnMaster: Train the master policy.
Input:Q : the value function to train, q: the task query, url : the website URL, ENV :

the task execution environment, LearnForm: the algorithm to learn the
form-filling sub-policy

Hyperparameters: N : the number of episodes,M : the number of steps in each episode,
α : learning rate, γ : reward discount factor

Global variables: RHF : reward history of form F , RF : reward function for form F
1 begin
2 initialize the set of action sequences AS as ∅
3 for episode j from 1 to N do
4 reset ENV and load url in the browser
5 initialize the action sequence as as empty
6 initialize s0=<q,w0, as> wherew0=url ’s start page
7 calculate ϵ as 1 − j/N
8 for step i from 0 to M do
9 set Ai as the set of possible actions in si

10 break current episode if Ai = ∅
11 convert Ai to A′i by grouping select/type actions into fill-form actions
12 generate a random number k in the range [0.0, 1.0)
13 if k < ϵ then
14 randomly choose an action ai from A′i
15 else
16 select an action ai = arдmaxa∈A′i

Q (si , a)

17 if ai is a form-filling action fill-form(F ) then
18 get actions asF = LearnForm(F , ϵ ) and execute in ENV
19 else
20 execute ai in ENV
21 observe ri and si+1
22 updateQ (si , ai ) ← (1 − α )Q (si , ai ) + α (ri + γ max

a
Q (si+1, a))

23 put ai into as
24 put as into AS
25 put <asF , Rmax > into RHF if F has been filled. Rmax is the maximum

cumulative reward in this episode
26 train RF with a batch sampled from RHF for each form F
27 returnQ and the set of action sequences AS

We explored how to adapt reinforcement learning (RL) to our
problem. In addition to meeting the two requirements above, RL
works well for non-deterministic search, which in our case occurs
when a website’s content changes dynamically during exploration.

Hierarchical policy. In standard RL, at each step i , an agent
selects an action ai∈ A in the current state si∈ S based on a policy
π : S → A. The agent aims to maximizes the cumulative reward
R by rolling out episodes as suggested by π . Unlike traditional
applications of RL [30, 37, 43, 44, 57], A becomes very large when
considering real websites [19, 40]. In addition to negative rewards
based on locality and directionality, we further address this problem
by adopting a hierarchical policy [31].

We introduce the concepts of form element and form-filling action.
A form element F consists of multiple selectable or editable UI
elements that belong to the same form. Forms can be identified
by a <form> HTML tag in the DOM tree. If no <form> element
exists in the DOM tree, the union of all selectable and editable UI
elements in the page is viewed as a form element. A form-filling
action, denoted as fill-form(F ), is a meta-action representing the
process of generating inputs for each element e ∈ F .

Using this terminology, we represent the agent’s policy in a two-
level hierarchy: a master policy π : S → A′ where A′ is the set of
click, enter and fill-form actions in the current state, and several
sub-policies πi : S → Ai , where each sub-policy πi corresponds to
a form element Fi with Ai being the set of select and type actions
in Fi . The master policy π drives the overall navigation process by
picking actions from A′. If the fill-form(Fi ) action is selected, πi
takes over until Fi is completed.



Algorithm 2: LearnForm: Train sub-policy for a form.
Input: F : the form to fill, ϵ : randomness value
Hyperparameters: K : the number of episodes
Global variables:QF : Q network of F , RF : reward function for F

1 begin
2 create an empty replay buffer Dr eplay

3 initialize the set of action sequences AS as ∅
4 for episode j from 1 to K do
5 initialize the action sequence as as empty
6 for i -th element e in F do
7 set Ai as the set of possible actions for e
8 generate a random number k in the range [0.0, 1.0)
9 if k < ϵ then
10 randomly choose an action ai ∈ Ai
11 else
12 select an action ai = arдmaxa∈Ai QF (si , a)
13 compute ri with RF and get si+1 by simulating ai in si
14 put <si , ai , ri , si+1> into Dr eplay

15 put ai into as
16 sample a batch from Dr eplay (if enough entries)
17 perform a gradient descent step to updateQF (as in Double Q-Learning [67])
18 put as into AS
19 return the action sequence as ∈ AS with the highest reward

Master policy.To learn π we use Q-learning [69]. The algorithm
(Algorithm 1) trains a function Q : S × A′ → R to represent
the long-term value of taking action a in si∈ S . Q is represented
as a mapping table, in which each key is a state-action pair <s,a>
and the value is Q(s,a). An action is uniquely identified by its type,
value, and target element’s xpath, and a state is identified by the
identifiers of all actions in the state. To train the Q function, the
agent is allowed to try for N episodes and takeM steps in each one.
To begin, Q is 0 and the agent explores the state randomly. The
agent updates Q based on the collected experience and gradually
moves from exploration (choosing actions randomly, line 14) to
exploitation (choosing actions based on Q values, line 16).

Form sub-policies.We use deep Q-network (DQN) [44] to train
the form sub-policies. DQN is similar to Q-learning except that the
value function Q(s,a) is approximated with a deep neural network
(DNN) instead of a mapping table. For sub-policies we prefer DQN
over Q-learning because a DNN can capture commonalities between
state-action pairs in forms (while in Q-learning each state-action
pair is represented as a unique identifier). For example, the action
of typing a pick-up location and typing a drop-off location into the
correct text boxes have similar representations in a DNN model, so
that the experience about one can be used to learn the other.

The algorithm to train the sub-policy (Algorithm 2) aims to find
the best action for each form element that can help the master
maximize the cumulative reward. Since the sub-policy only deals
with a form and is unable to get the long-term cumulative reward,
it trains the Q network using an approximate reward function, RF
(line 13). Specifically,RF (q,w,as) = R(q,w,as)+LRF (as).R(q,w,as)
is the reward function defined in §3.2 to evaluate whether a form
with the filled values has high similarity withq, representing a short-
term reward of filling F with as . LRF is a linear regression model
learned by the master policy (line 26 in Algorithm 1) to predict
the long-term benefit. The input to LRF (as) is the concatenation of
one-hot encodings of each action value in as , and the output is the
difference between the maximum reward Rmax achieved by the
master policy after filling F with as and R(q,w,as) (LRF is large if
F is the correct form and as is the correct sequence of inputs).
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Figure 5: The Q network used in the sub-policy.

Another benefit of sub-policies for forms is that since interacting
within a form does not lead to page re-directions (which instead
can happen with the master policy), we can explore a form by sim-
ulating its possible state transitions. For example, the state/reward
obtained after executing type(e , “Central Park”) in s can be simu-
lated by simply setting the value of e to “Central Park” in s . Through
simulation, we can run many more episodes to train the sub-policy.

Q-network implementation. The Q network used to train the
sub-policy is shown in Figure 5. The input consists of features
extracted from the task query q and the state-action pair <s ,a>. The
task query q is encoded as a vector vecq , which is the mean of
the embeddings of all non-parameter words in q (computed using
spaCy [58]). The state s consists of a webpagew and is encoded as
a single-channel image imw , in which the pixels in each element
e are set to the similarity between etext and pann . An action a is
represented with its target element e , type, and input value v (the
entered text or the selected value). Suppose p is the parameter in q
that has the highest similarity with v , and pann is the annotation
of p; v’s encoding vecv is the concatenation of the embeddings
of v , p and pann . If no parameter p has similarity with v above
a threshold (e.g., 0.5), vecv is empty. An element e is encoded as
a single-channel image ime in the same scale of the webpage, in
which the pixels are set to 1 inside e and 0 elsewhere. To reduce
model size, we resize ime and imw to 100×100 pixels.

imw is passed through three 7×7 convolutional layers to spread
the similarity information across elements. Then, the feature map is
masked with ime to exclude information outside the target element,
and converted to a vector using four 3×3 convolutional layers. Fi-
nally, the vector is concatenated with vecq and vecv and processed
with a fully connected (FC) layer to generate the Q value.

3.4 Tasklet generation
We now describe how the actual output of Glider is assembled. The
RL agent may succeed at discovering a tasklet, but with unnec-
essary actions interleaved with good ones; or it may produce an
incomplete tasklet. The goal of the post-processing module is to ana-
lyze the agent’s learning trace (consisting of N episodes) to identify
correct tasklets and possibly fix failing ones. It is a 4-step process.
(1) Based on the final cumulative reward, the k highest-rewarded



Table 1: Details for Glider-int: 164 unique task-website pairs
covering 10 site categories, 40 task queries and 66 websites.

Category #tests Example of test case (q and url pair)

Restaurants 16 q=Reserve a table for 4 people at 8pm in Boston,
url=opentable.com

Transport 14 q=Estimate ride fare from 1st Ave, New York to Central
Park, url=uber.com

Real estate 20 q=Rent a house in Seattle with 3 bedrooms, url=rent.com
Shopping 17 q=Find women shoes, url=ebay.com
Books 24 q=Find books by Umberto Eco, sort by publication date,

url=aadl.org
Academic 18 q=Citations of “ImageNet: A Large-Scale hierarchical...”,

url=scholar.google.com
Dictionary 18 q=Translate intelligent from English to Spanish,

url=translate.com
Tools 16 q=Convert length from 7333 inches to feet,

url=unitconversion.org
Flights 16 q=Flights from BOS to SFO departing 09/01 for 2 adults,

url=aa.com
Health 5 q=Lookup canceled dermatology appointments at labora-

tory, url=openmrs.org

Total 164

task executions are selected (by default k = 5). (2) Any action that
produced a negative reward is removed after verifying that the new
action sequence can be successfully replayed and yields a higher re-
ward. (3) Possibly missing “submit” actions usually occurring at the
end of a task execution (e.g., missing enter action) are automatically
injected and tested. (4) The final sequence of actions is replayed to
verify whether the tasklet works and a screenshot of the page ob-
tained at task completion is captured. The final output consists of at
most k tasklets ranked by their cumulative reward. For each tasklet,
the output contains partial and total rewards, the replay trace to
execute the tasklet (example in Figure 4), and a screenshot of the
result page. DOM elements are currently identified by xpaths, but
other invariants (e.g., id, class, name, etc.) could also be included.

4 EVALUATION
We evaluate Glider through (i) an assessment of how well it can
extract correct tasklets compared to two baselines, (ii) an analysis
of its varying configurations, and (iii) a small developer study.

4.1 Experimental setup
Datasets. Since no standard dataset existed to test Glider, we col-
lected two new datasets. Compared to previous work [19, 40], our
datasets consist of more complex tasks on real websites.4

Initially, we collected an internal dataset, Glider-int, as follows.
We chose 10 site categories and wrote website-independent task de-
scriptions relevant to each category for a total of 40 unique queries.
We chose tasks that are common in the web, with a medium range
of complexity. Then, we selected various websites for each category
based on popularity (Google’s rank in search results). We dropped
websites that blocked our agent or Selenium – this happenedmainly
with flight and real estate websites. In total, we selected 66 web-
sites. We combined task descriptions with websites supporting such
4Liu et al. [40] and Gur et al. [19] test with 53 and 14 MiniWob [56] tasks, respectively.
MiniWob queries (e.g., “Click the red box”) describe UI actions rather than end goals
(e.g., “Rent a house”), hence are not compatible with Glider’s reward approach.

tasks5 and obtained 164 test cases, each one corresponding to a
unique query-website pair. Table 1 summarizes the distribution of
tasks across categories. Overall, the generated tests covered a good
range of complexity. The length of a task measured as the number
of steps (UI interactions) necessary to complete the task ranged
from 2 to 9 (avg=3.8) and the number of different webpages visited
to complete the task ranged from 1 to 6 (avg=1.9). In terms of action
space size, across all tests an average webpage had 76.4 actions.

We also collected an external dataset, Glider-dev, produced
through a small developer study (more details in §4.4). It consists
of 44 test cases in the same site categories as above.

Methodology. 20 of the 164 test cases in Glider-int were used
for setting hyperparameters and reward weights; all other test
cases were introduced at evaluation time (Glider does not require
any pre-training). We executed all tests online, on a cluster of GPU
nodes (NVidia Tesla K40 and M40 with 12GB of RAM) and manually
inspected the outputs consisting of maximum k=5 top-rewarded
tasklets and screenshots of their final states. Despite Glider being
automated, manually inspecting the outcome of each test limited
the number of task-website combinations we could test.6 A tasklet
was deemed correct if the actions completed the goal described in
the query in maximumM=5+len(split(q)) steps.

Settings. Tests were executed for N=100 episodes withM steps
per episode for the master policy and K=20 episodes for the sub-
policies. The duration of an episode for the master policy was
usually around 18 seconds. Unless otherwise noted, the reward
weights were set as follows:wdist=wdir =-2,wtask=5, andwpar =10.

Metrics.We compute the recall@k (R@k) by manually inspect-
ing the top k tasklets returned. We compute it for k = 1 and k = 5.

Baselines. A direct comparison of Glider with other related ap-
proaches is not possible, since they differ in the type of supervision
(large number of demonstrations and/or pre-training), website envi-
ronments (MiniWoB [56] instead of real websites), or inputs needed
(step-by-step instructions instead of a task query). Nonetheless, we
benchmark Glider’s performance using the following two search
algorithms which meet the requirements outlined in §3.3:

(i) Hill climbing is a local search algorithm. At each step, it picks
the action that gives the highest reward, and repeats until there are
no better moves. In our settings, since the reward of an action is
unknown beforehand, we approximate it as the similarity between
an action and the task description (i.e, maxtw ∈q {sim(tw,atext )},
where atext is the text associated with the interacted UI element).

(ii) Monte Carlo tree search (MCTS) is a heuristic search algorithm.
The decision process is modeled as a tree and the goal is to move
from the root to a leaf node that can maximize the outcome by pick-
ing the most promising action at each step. We used the standard
UCT formula [29]. In each state si , the action ai with the highest
Upper Confidence Bound Ri/ni +2

√
(lnNi )/ni is chosen, where Ri is

the maximum cumulative reward among all past episodes in which
ai is taken, ni is the number of episodes in which ai is taken, and
Ni is the number of episodes in which si is visited.
5For example, a website for searching restaurants may or may not support making
reservations, hence the search task but not the reservation task may be tested on it.
6To automate the tests we tried recording demonstrations for each task-website pair
but comparing Glider’s output with them turned out unreliable because demonstrations
age quickly (due to website and content updates) and capture only one valid path. To
freeze the test environment we tried building a cache, but even after saving 2,000+
states per site we had many cache misses because too many execution paths existed.

https://www.opentable.com/
https://www.uber.com/
https://www.rent.com/
https://www.ebay.com/
https://aadl.org/
https://scholar.google.com/
https://www.translate.com/
http://www.unitconversion.org/
https://www.aa.com/
https://demo.openmrs.org


Table 2: Performance of Glider, MCTS and Hill climbing
with the Glider-int dataset.

Category Glider MCTS HillClimb
R@1 R@5 R@1 R@5 R@1 R@5

Restaurants 75.0 81.3 68.8 68.8 56.3 62.5
Transport 78.6 92.9 64.3 78.6 78.6 85.7
Real estate 75.0 90.0 60.0 65.0 40.0 65.0
Shopping 52.9 82.4 52.9 58.8 47.1 82.4
Books 50.0 70.8 37.5 45.8 33.3 45.8
Academic 55.6 66.7 22.2 33.3 27.8 44.4
Dictionary 50.0 72.2 44.4 66.7 38.9 77.8
Tools 68.8 81.3 31.3 43.8 31.3 43.8
Flights 75.0 81.3 43.8 56.3 18.8 50.0
Health 60.0 60.0 40.0 40.0 0.0 40.0

Summary 63.4 78.7 46.3 56.1 39.0 60.4

4.2 Performance results
Main results.We executed Glider and the two baselines on Glider-
int. As Table 2 shows, Glider achieved R@1 of 63.4% and R@5 of
78.7%. The most successful categories were Restaurants, Transport,
Real estate, and Flights where R@5 was on average 86.4%. Glider
outperformed both baselines which achieved R@1 of 39–46% (R@5
was 56–60%),7 thus confirming the effectiveness of our approach.
MCTS would have likely performed better with more episodes, but
on large webpages so many episodes are not realistic.

Task and website complexity. Success rates slightly increased
for websites with more actions and UI elements (top 2 graphs
in Figure 6) as these sites were more informative to compute re-
wards. However, the performance slightly dropped when there was
too much noise (more than 240 UI elements per state). Tasks that
spanned across multiple pages were more difficult (R@1 was 39.1%
for 3-page tasks) as multi-page tasks usually imply larger action
spaces and harder reward computations. Shorter tasks achieved
higher recall (R@5 was 92.5% for tasks that can be completed in 2
steps); however, tasks that required more than 5 steps were not the
most difficult because they usually involved large forms that were
effectively handled by the form sub-policies.

Error analysis.We inspected the 35 tasks for which a correct
tasklet did not appear in the top 5. We identified four failure causes.
(1) Reward model (21 tasks): the correct tasklet was not the highest-
rewarded although it was explored by the agent. A wrong action
(e.g., clicking a wrong button that has high similarity with the task
query) may get over-rewarded whereas a correct one may be under-
rewarded (e.g., in the task “Find papers that cited...”, clicking “cited
by” caused a transition to a page that had low similarity with the
query). (2) Widget support (6 tasks): the agent failed to interact with
some date pickers, counters and drop-down menus. Date pickers
are particularly hard because the apparently-simple task of setting
a date actually involves many steps. Glider currently handles only
date pickers that support typing. (3)Website incompatibility (5 tasks):
some critical actions were problematic for Selenium, e.g., DOM
elements embedded in an <iframe>. (4) Algorithm issues (3 tasks):
due to the limited time budget, the agent did not explore enough.

7We also tested the Random Walk baseline introduced in §2. Due to space constraints
we do not report its performance, but its overall success rate was poor (R@1=14.6%).

Figure 6: Recall rates with varying task/website complexity.

4.3 Varying configuration analysis
Empirically, we found an optimal configuration (Glider-default)
for the reward weights (wdist=wdir =-2,wtask=5 andwpar =10). In
this test, we varied one reward weight at the time and measured the
impact on recall. We also conducted an ablation analysis by testing
Glider with the form sub-policies disabled, with query annota-
tions omitted, and with its similarity function replaced by semantic
similarity (implemented using spaCy [58]). We tested 30 cases, 3
randomly-selected from each category in Glider-int. Table 3 reports
R@k normalized by the corresponding R@k of Glider-default.

Sub-policy.Without sub-policies, the agent uses one uniform
policy which degraded R@1 by 79%. This demonstrates the need
for hierarchical policy, especially in the presence of large forms.

Query annotations.When ignoring annotations, R@1 dropped
by 36% and R@5 by 19%. Reward computation was less accurate,
and UI elements for query parameters were harder to identify.

Semantic similarity. Semantic similarity caused R@1 to drop
by 50% and R@5 by 37%. A task like “Translate intelligent from
English to Spanish” failed because “Spanish” was considered simi-
lar to “English” so it was never selected. To be effective semantic
similarity may require to be fine tuned on a per task/category basis.

Reward weights. Overall, our default configuration achieved
the best performance. The worst recall was forwpar =0, confirming
the importance of parameter similarity. Disabling action locality
(wdist ) and directionality (wdir ) decreased R@1 by 43–50%, while
wtask=0 was less harmful because the parameters and annotations
were often enough to match the pages with the task queries.

4.4 Developer study
We tested Glider also with real user queries (Glider-dev dataset). We
recruited 5 developers who had not heard about Glider before. We
gave them a one-sentence description of Glider and a sample task
query and website. Then, we asked them to describe a task in each
of our 10 site categories and provide a website for its execution.

Our developers reported that defining the tasks was easy and
took less than a couple of minutes per task. Despite the little in-
formation provided and lack of prior experience with Glider, the
quality of their queries was comparable to that of our internal
dataset.



Table 3: Normalized R@k for different configurations. Re-
sults based on 30 test cases from Glider-int.

Condition R@1 R@5 Condition R@1 R@5

Glider-default 1 1 wdir =0 0.50 0.88
without sub-policy 0.21 0.88 wdir =-5 0.79 0.88
without annotations 0.64 0.81 wtask=0 0.86 1
with semantic sim 0.50 0.63 wtask=10 0.86 0.94
wdist=0 0.57 0.88 wpar =0 0 0
wdist=-5 0.93 0.94 wpar =5 0.79 0.94

Success rates. From the 50 developers’ query-website pairs, we
excluded Selenium-incompatible websites and obtained a total of
44 task queries across 41 websites (with 17 websites overlapping
with Glider-int). We ran Glider on them. Glider yielded an average
R@1 of 65.9% and R@5 of 77.3%, similar to the Glider-int results.
In addition to the failure causes previously identified, we observed
two others. One developer wrote the query “Search for a recent
paper on ...” and expected the agent to sort the results by date.
Contextual expressions of this type cannot yet be resolved. Two
other queries required entering multiple parameters into the same
input field (“Buy a patagonia [brand] fleece [product] in size large
[size]” required typing “patagonia” and “fleece” into the same field).

5 RELATEDWORK
We are not aware of any other unsupervised approach to extract
tasklets from current websites. In the following, we discuss work
related to web automation and summarize its limitations.

Record and replay. “Programming by demonstration” is a pop-
ular approach in web automation tools [2–4, 6, 24, 25, 28, 33, 35, 38,
39, 50, 52, 63, 66, 73], where users record themselves interacting
with a website and obtain a script to replay the interaction. Cur-
rent work focuses on making replay resilient to UI changes [4] and
vision-assisted [5, 54]. Overall, the manual effort required to record
and maintain UI scripts makes these tools unsuitable for our goal.

Program synthesis. These techniques synthesize a program
that satisfies a given specification, usually a logical specification
that relates the inputs and outputs of the program [17]. They are
mainly used for data or code transformation tasks [11, 21, 68] (e.g.,
transformations of Excel columns [18]). LaSEWeb [48] proposes a
domain-specific language to automate search tasks, but the effort
and technical skills required make it unsuitable for our goal.

Mapping instructions to actions. The problem of interpreting
and executing NL instructions has long been studied [12, 13, 34,
64, 72]. Previous work has explored how to automatically generate
executable actions from how-to documentation [7, 34, 64] and bug
reports [14, 75]. While the goal is similar, these techniques are not
widely applicable because (i) they assume how-to documents that
list “steps” to reproduce a problem where each step maps to a UI
action, (ii) they use a vocabulary which is tied to the app’s UI, or (iii)
they rely on app-specific model training [75] or static analysis [14].
In contrast, Glider does not require any per-app pre-processing, and
its NL inputs do not follow any step structure and are UI oblivious.

AI agents for web navigation. These techniques do not gen-
erate UI scripts, but instead train AI agents that can execute web
tasks described in natural language [1, 19, 40, 56, 59]. To learn a

task, agents require human demonstrations and/or the final state
of a task, which must be collected manually. The training over-
head of these solutions makes them hard to scale. Moreover, all AI
agents proposed so far [19, 40, 56] have been designed and tested on
MiniWoB [56] websites that consist of small mock HTML pages. In
contrast, Glider works on real websites and requires no pre-training.

Beyond these four bodies of work, RL agents for (deep) web crawl-
ing [20, 23, 26, 42, 49] are related to Glider, but also substantially
different because (i) rewards are based on the number of crawled
pages (not on task completion) and (ii) agents interact mainly with
search boxes and hyperlinks [26, 42, 49]. Our work fits in the gen-
eral theme of web knowledge extraction [9, 16, 22, 46, 60, 70] and
extends it to actions and tasks. Finally, Glider leverages various RL
techniques including DQN [44], prioritized experience replay [51],
double Q learning [67], and hierarchical RL [31].

6 LIMITATIONS AND FUTUREWORK
GUI coverage. Glider does not support sliding bars, some types of
date picker, and other customized widgets – sub-policies could be
trained for each one of these. Scroll, drag, and double click actions
are also not supported. Glider uses text and font of DOM elements,
but a more comprehensive structural analysis of the DOM tree
could be used to classify actions and their inter-dependencies.

Full automation.To detect failing tasklets due to Glider’s errors
or website updates a developer can inspect Glider’s output including
the captured screenshots. However, erroneous tasklets should be
detected automatically by, for instance, comparing the achieved
reward with an “expected reward score” computed based on the
task query. Tasklets should also be updated on a regular basis.

Tasklet expansion. Extracted tasklets could be more compre-
hensive. For example, given the query “Find a house with 2 bed-
rooms”, Glider could extract a tasklet that supports the input “num-
ber of bedrooms” but also “number of bathrooms”, “price range”,
etc., which can be inferred using UI and DOM tree analysis.

False tasklets. So far we have tested tasklet extraction on web-
sites within the task scope, but, in the future, Glider should detect
whether a tasklet can or cannot be found in any website.

Ethical concerns. As with web crawlers and bots [65], Glider
can cause denial of service, cost, privacy and copyright issues. Web-
site owners should have the option to stop Glider from visiting some
or all of their pages, as they stop web crawlers using robots.txt [41]
and other metatags [62]. Glider should also act responsibly with-
out assuming site owners have taken protective measures, such
as by reducing crawling speeds and automatically constraining or
blocking interactions with critical UI controls (e.g., payments).

7 CONCLUSION
We envision a future where AI assistants will be able to automati-
cally use the Internet for executing human tasks. To accomplish this
vision, we introduce Glider for automatically generating tasklets
for current websites. While performance can be further improved,
we demonstrated the approach is feasible and a generalized reward
model can help tasklet generation scale. Glider requires neither
modifications to existing websites nor website-specific pre-training.
In the future, site owners may decide to annotate their websites to
aid tasklet discovery (as with Schema.org tags for structured data).
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