7084

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Seamless Cross-Edge Service Migration for
Real-Time Rendering Applications

Yuanzhe Li
Ao Zhou

, Shangguang Wang
, Member, IEEE, Mengwei Xu
and Yunxin Liu

Abstract—Seamless cross-edge migration for real-time render-
ing applications is challenging. The strong interactive nature of
real-time rendering applications demands a downtime lower than
15 ms to achieve an imperceptible migration. Existing methods
based on virtual machine migration and container migration suffer
from unpleasant downtime brought by dirty page retransmission-
induced repeated memory data copy and the shared storage failure-
induced extensive disk data copy. In this article, we propose
Cloud-assisted Service Migration (CSM) which leverages cloud-
edge collaboration to achieve seamless service migration for real-
time rendering applications. CSM improves service migration user
experience in three folds: First, it introduces a dual rendering
mechanism to bypass the peer-to-peer data copy and compresses
the freezing stage. Second, a user equipment-centric session switch
mechanism is proposed to save time by well coordinating applica-
tion session switches and 5G user plane session switches. Third, a
smooth switching mechanism is leveraged to prevent unpleasant
frame flickers during session switching. We implement CSM in
edge-rendering multiplayer games and deploy it on a 5G test bed
with a full-stack user plane protocol stack. The evaluation results
show that CSM can reduce downtime to < 14 ms and the service
migration process is user imperceptible.

Index Terms—5G core network, downtime, mobile edge
computing, service migration.

I. INTRODUCTION

EAL-TIME rendering applications, including cloud gam-
Ring, cloud virtual reality, cloud augmented reality, etc.,
are thriving in the 5G era. They are expected to become a bridge
between the real world and the digital twin world [1]. However,
limited by the weak computing capability of wearable display
equipment, real-time rendering applications must connect to
a powerful yet expensive local host. This makes it neither

Manuscript received 1 December 2022; revised 20 October 2023; accepted
25 October 2023. Date of publication 10 November 2023; date of current version
7 May 2024. This work was supported in part by NSFC under Grants 62302262,
62272261, U21B2016, and 62032003, and in part by Xiaomi Foundation.
Recommended for acceptance by A.-C. Pang. (Corresponding author: Yunxin
Liu.)

Yuanzhe Li, Yuanchun Li, and Yunxin Liu are with the Institute for Al
Industry Research(AIR), Tsinghua University, Beijing 100190, China (e-mail:
liyuanzhe @air.tsinghua.edu.cn; liyuanchun@air.tsinghua.edu.cn; liuyunxin@
air.tsinghua.edu.cn).

Shangguang Wang, Ao Zhou, Mengwei Xu, and Xiao Ma are with the
State Key Laboratory of Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Beijing 100876, China (e-mail:
sgwang @bupt.edu.cn; aozhou@bupt.edu.cn; mwx @bupt.edu.cn; maxiaol8@
bupt.edu.cn).

Digital Object Identifier 10.1109/TMC.2023.3331773

, Senior Member, IEEE, Yuanchun Li
, Member, IEEE, Xiao Ma
, Senior Member, IEEE

, Member, IEEE,
, Member, IEEE,

lightweight nor affordable for most people. Moving the ren-
dering module to the cloud and streaming the rendered images
to User Equipment (UE) seems to be a cost-friendly scheme,
but the long distance between the UE and the cloud brings extra
high latency, resulting in an unpleasant user experience [2], [3].
To tackle this problem, edge rendering is proposed. This design
provides low latency rendering service at the network edge and
frees UE from the computation-intensive rendering operation.
As such, users can enjoy real-time rendering applications on a
thin client at an acceptable price.

However, real-time rendering applications rely on real-time
streaming protocols such as Real Time Streaming Protocol
(RTSP) [4] and Real Time Messaging Protocol (RTMP) [5] to
deliver high-resolution video streams to UE [6]. The low-latency
requirement limits the coverage area of an edge cloud that
provides edge rendering. In addition, to prevent extra latency
brought by buffers, some streaming systems designed for real-
time rendering applications even adopt a design that buffers no
video frames at the UE side [6]. The above designs make edge
rendering vulnerable to latency increases brought by user move-
ment. If the user moves out of the connected edge cloud’s cov-
erage area, the Quality of Service (QOS) deteriorates as a result
of the rising latency. To tackle this problem, follow me cloud [7]
is proposed, which takes advantage of service migration among
edge clouds to dynamically move a service instance to a more
adjacent edge cloud that has lower latency. However, service
migration is a costly operation. It involves large amounts of
data transference and introduces service downtime. Downtime
is a period of time during service migration when the service
is frozen and unavailable. Users will suffer from unpleasant
experiences such as motion sickness, screen freezes and black
edges [3] during downtime. As a result, reducing downtime to
less than 15 ms is a basic premise [8] to prevent unpleasant
experiences and make the service migration imperceptible.

The mainstream methods used to conduct service migration
are Virtual Machine (VM) live migration [9] and container live
migration [10]. VM live migration is a mature and widely-used
technology in cloud data centers. However, VM live migration
brings excessive unnecessary data transference because it mi-
grates the whole operating system. To make migration more
lightweight, container live migration becomes a hot research
topic in mobile edge computing [11], [12]. With the help of
Checkpoint/Restore In Userspace (CRIU) [13], container live
migration achieves a process-level migration. During container

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0594-2745
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0002-1591-2526
https://orcid.org/0000-0001-5743-9418
https://orcid.org/0000-0001-6271-6993
https://orcid.org/0000-0001-5742-8890
https://orcid.org/0000-0001-7352-8955
mailto:liyuanzhe@air.tsinghua.edu.cn
mailto:liyuanchun@air.tsinghua.edu.cn
mailto:liuyunxin@air.tsinghua.edu.cn
mailto:liuyunxin@air.tsinghua.edu.cn
mailto:sgwang@bupt.edu.cn
mailto:aozhou@bupt.edu.cn
mailto:mwx@bupt.edu.cn
mailto:maxiao18@bupt.edu.cn
mailto:maxiao18@bupt.edu.cn

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

live migration, only relevant files and memory states are trans-
ferred, making it much more lightweight than VM live migra-
tion.

However, VM migration and container migration are not
ideal methods to guarantee the service continuity of real-time
rendering applications in cross-edge scenarios. First of all, their
downtime is not acceptable. Although massive methods such
as pre-copy [9], post-copy [14] and layered-structure [12] have
been taken to reduce downtime, their downtime ranges from
tens of milliseconds to several seconds [10], [11], [15]. The
performance of these methods fails to meet the 15 ms standard.
Besides, our measurements in Section II-C reveal that the down-
time of VM migration and container migration increases sharply
if a high-frequency memory writing operation is conducted
during the migration. This feature prevents them from migrating
computation-intensive real-time rendering applications. In addi-
tion, VM migration and container migration both have other in-
herent shortcomings. VM live migration relies heavily on shared
storage provided in intra-cloud scenarios such as Ceph [16] and
NES [17] to prevent heavy file system transference, which is
not applicable because of the runtime performance degradation
brought by Wide Area Network (WAN) environment. Container
live migration fails to work for real-time rendering applications
because checkpoint of graphical applications is not supported
by CRIU [18].

To address this issue, we propose CSM, a cloud-edge
collaboration-based method that can achieve application-level
service migration for real-time rendering applications. Our in-
sight is that directly copying all the state data from the source
edge cloud is too costly. Instead, the complicated states of
real-time rendering applications can be recovered from logic
data flow exchanged between edge and cloud. One example is
that mobile game clients can resume the game and catch up
with other players’ progress after disconnection. As a result,
we use cloud-assisted dual rendering instead of direct peer-
to-peer cross-edge state copy to achieve state synchronization.
It leverages state information from the logic flow to create a
twin application instance at the destination edge cloud and get
synchronized with the original instance. Such a design bypasses
the performance bottleneck brought by dirty page retransmission
during memory copy and makes it possible to further reduce
downtime.

However, realizing such an architecture should overcome
the following two key challenges. 1) How to achieve a well-
coordinated simultaneous switch of application session and 5G
user plane session with the downtime limitation. Both of the
above two switch procedures should finish in time to prevent
introducing extra downtime. However, the two systems have in-
dividual controllers, which makes quick and coordinated session
switches much more difficult. 2) How to maintain the continuity
of the UE screen during session switching to guarantee an
imperceptible migration. CSM simplifies the migration process
into a switch from the source edge video stream to the destination
edge video stream. Because the source edge and destination edge
render images individually, the frames reach UE from both ends
could not be ideally identical. As a result, even if the downtime
could be compressed short enough, users may still suffer from

7085

unpleasant visually abrupt change, i.e., frame flickers. With such
flickers, the migration is still perceptible.

To tackle the first challenge, we propose a UE-centric session
management mechanism. In the pre-migration stage of CSM,
the migration preparations are dominated by the computation
controller and 5G core network individually. For computation
state migration, the two edge clouds get computation states
synchronized with the assistance of cloud logic servers. For
the communication network, a new Protocol Data Unit (PDU)
session from the base station to the destination edge cloud is set
up and work in parallel with the previous PDU session. Thanks
to the dual rendering mechanism, the UE receives rendering
streams from the two edge clouds simultaneously at the end of
the pre-migration stage. On this basis, the physical switches of
computation and network sessions are turned into a one-time soft
switch in the UE. The migration stage is simplified as a stream
session switch at the UE side, which is achieved by exchanging
the configurations in the UE streaming selector.

To address the second challenge, we introduce a smooth
switching mechanism involving Structural Similarity
(SSIM) [19] threshold, frame sliding and asynchronous
one-frame buffer. SSIM threshold determines when to trigger
stream switching. Only when video frames streamed from
both edges are similar enough will it allows a stream switch.
Frame sliding enables the UE end to present a weighted average
of two video stream frames after the switch is triggered,
making the transition between two video streams smoother. The
asynchronous one-frame buffer mechanism defines the data
exchange mode between the streaming client thread and the
streaming selector thread in UE, which guarantees that frames
with significant differences are flushed in time.

To summarize, the main contributions are listed as follows.

® We show that massive data transference resulting from the

dirty page retransmission-induced repeated memory data
copy is the performance bottleneck of VM live migration
and container live migration (Section II).
Then, we propose CSM, a cloud-edge collaboration-based
method designed for real-time rendering applications (Sec-
tion III-A and III-B). CSM replaces peer-to-peer state copy
with cloud-assisted dual rendering to compress the freezing
stage. As far as we know, this work is the first to consider
not only computation state transference, but also 5G user
plane PDU session switch in service downtime reducing.
® We develop UE-centric session management and smooth
switching mechanism (Section III-C). The former is in
charge of coordinating simultaneous switches for both
application session and 5G user plane session. The latter
makes the video stream transition from the source edge to
the destination edge imperceptible and guarantees the user
experience.

® The proposed architecture is implemented based on a 5G

core network testbed that contains full stack 5G core net-
work user plane (Section IV). We conduct experiments on
edge rendering mode (Section V). Experiment results show
that our method can further reduce the average downtime
under 14 ms, which is low enough for an imperceptible
seamless migration.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

7086

II. BACKGROUND AND MOTIVATION

In this section, we will first talk about the features of real-
time rendering applications. Then the whole process of service
migration is analyzed to show where the downtime comes from.
Finally, we will demonstrate how VM migration and container
migration work and discuss why using these methods cannot
further reduce downtime.

A. Understanding Real-Time Rendering Applications

Real-time rendering applications refer to applications that

interact with the real world in a real-time manner. The “real-
time” here comes in two folds. First, the application should re-
spond to user inputs in a very short time. Second, the responsive
content is generated after user inputs instead of pre-recorded
in advance. As a result, these applications are usually delay-
sensitive and computation-intensive. One typical example is the
multiplayer online game, in which multiple players collaborate
or compete in one game environment. Note that real-time ren-
dering applications are not limited to multiplayer online games.
With the rapid development of virtual reality and augmented re-
ality technologies, real-time rendering applications are supposed
to thrive in various online cooperating scenarios.

Generally, real-time rendering applications consist of three
parts, the global logical module, the rendering module and
the front-end module. The global logical module serves as the
central server in the client-server architecture. It runs the main
logic and provides a shared virtual world for users. Besides, it
maintains global states and provides state information exchange
by collecting UE-side states and notifying shared state changes
to each UE. The rendering module translates signal-level infor-
mation into 2D/3D video in real time. The front-end module
has two roles. As the output interface, it decodes and displays
videos generated by the rendering module. As the input source,
it collects user operations and sends the encoded events to
the rendering module. In most cases, the rendering module
and front-end module work in one-on-one mode. Each of their
instances serves only one user.

According to the deployment location of rendering modules,
the architectures of real-time rendering applications can be clas-
sified into local rendering, cloud rendering and edge rendering
(shown in Fig. 1). Local rendering is the most commonly used
architecture. It deploys the rendering module together with the
displaying module either in one UE or in the same Local Area
Network (LAN). This architecture can guarantee a low latency
between the front-end module and the rendering module. How-
ever, because rendering operations are computation-intensive,
the UE is either heavy and battery-exhausting or limited within
the same LAN with a local rendering server. To tackle this prob-
lem, cloud rendering is proposed in which rendering modules are
deployed into cloud data centers together with logical modules.
Cloud rendering takes advantage of the abundant computing
resource in the cloud data center to support rendering operations,
but its QOS is still far from satisfactory. Because the rendered
videos are streamed to UE, the long latency and the competitive
bandwidth of the WAN pose great challenges.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

\ Downward Logic Flow
Local € -, - —-—-—-—-—-—-—
Rendering | | e ecccescccecsccccaccaaco= >
Upward Logic Flow

Video Stream
Cloud

Rendering >
Control Flow >

Video Stream Downward Logic Flow
i ha— | EEEE
Rendering —_— T - - - - - - >

Control Flow Upward Logic Flow

A
\

[m
[T
[

LA

User Equipment Edge Cloud Cloud Data Center

\ Front-end Module Rendering Module Logic Module

Fig. 1. System architecture for local rendering, cloud rendering and edge
rendering.

User Equipment Edge Server Remote Cloud Server

Front-End Module

put Video

ure Player

vent Video Inpdt Event
Degader Degoder | ENg

RTS:I;TP/ TP/ | Conflbl Flow |

Rendering Module Global Logic Modulg

0 Us‘nput
Replay

Synchfonization|
adler/Degoder

PacketModule

[

Prtocol

I

Protocol stack of edge rendering architecture.

Downward
Logic Flow

Control Flow

Upward Logic Flow

5G Communication Network Internet

Fig. 2.

The emergence of mobile edge computing provides another
solution to this problem. As shown in Fig. 2, the rendering
module is deployed in the edge cloud, i.e., edge rendering. It
has two roles in this architecture. In the cloud-edge connection,
it serves as an application client which maintains the local
states of the user’s digital character and synchronizes states with
the global logic module through the Internet. In the edge-UE
connection, the rendering module serves as a video server. The
real-time rendered views are captured, encoded and streamed
to the front-end module in UE. At the same time, the front-end
module uploads the captured user operations to the rendering
module through a control flow. Both the video stream and the
control flow are carried by the 5G communication network
which provides network access with mobility support.

B. Understanding Service Migration Downtime

If a user moves out of the coverage area of the previous edge
server, the latency between UE and the edge server will rise,
and a service migration will be triggered. The service migration
includes two processes: network hand-off and computation state
migration. Network hand-off involves UPF re-selection and
PDU session setup. UPF is a network function of the 5G network.
It serves as an interconnect point between (3GPP) network and
the external data network. As shown in Fig. 3, the 5G network

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

Source Edge Cloud

G by session c—
. eI
T— M

Release

1 Base Station 1

B ¥

UE Movement

Destination Edge Cloud 1

4

PDU session 1"
PDU session 2

Base Station 2

Fig. 3. Network switch during service migration.

o

ezing Stage
Source, i 0 000i
Edge Cloud T —

Service
running
Destination

l EEEERI
Cleanup

u e w e Time
—

Edge Cloud Pre-copy Checkpoint i Final Copy : Restore Service
Running
Downtime
4——————— Migration Time —>
Fig. 4. Computation state migration procedure.

has to set up a PDU session between UE and edge cloud to allow
user-edge communication (PDU session 1). As the user moves,
the PDU session’s latency increases because of the path length
increment (PDU session 1'). If a service migration is triggered,
anew PDU session (PDU session 2) connecting to the new edge
cloud should be established. Such a process may also introduce
downtime if it is not finished in time. Note that UPF re-selection
is the process of choosing a destination edge cloud and selecting
a UPF that can route user packets to the new edge cloud. This is
a prediction and decision-making problem [7], [20], [21], which
is not discussed in this article.

The computation state migration is to move service instances
from the source edge cloud to the destination edge cloud together
with the instance running state and runtime context. The proce-
dure of a computation state migration using pre-copy is shown
in Fig. 4. It consists of four steps. The first step is pre-copy,
which includes disk data pre-copy and memory pre-copy. In
this process, the service is still running and responds to the
requests. The second step is the checkpoint operation, in which
the application is frozen, and the remained memory data will be
dumped. Then, the dump files are copied to the new edge cloud.
Finally, the application will be restored and continue running
based on the files transferred in the previous steps.

There are two key metrics in service migration, i.e., downtime
and migration time. Downtime is defined as the total freezing
time that the application has no response. Let T}, denote the
downtime brought by network hand-off and T¢y,, denote the
downtime brought by computation state migration. We assume
that the two processes are triggered simultaneously. Then the
total downtime 7yown can be calculated as follows:

Taown = maX{Tneta Tcomp} ()
Tcomp = Lchkp + Tcopy + Trcstorc (2)

where Tenip, Teopys Trestore represent time used for checkpoint,
final copy and restoration, respectively. Migration time is the

7087

total time used from the start of pre-copy to the end of restoration.
Therefore, it can be calculated as follows:

Tmig = Lpre + Tdown 3)

Tore represents the time used in pre-copy.

C. Case Study

We conduct case studies to evaluate the performance of cur-
rent VM and container migration technologies under different
bandwidths. Each evaluation is repeated five times to get the
average performance. We choose Proxmox Virtual Environment
(PVE) [22] and Podman [23] as representatives of VM and
container systems, respectively. PVE is an open-source server
management platform cloud, which provides VM support based
on QEMU [24] and KVM [25]. It supports both cold migration
and live migration for VMs. Besides, it also leverages Xor Based
Zero Run Length Encoding (XBZRLE)' to speed up memory
copy in the pre-copy stage. Podman is a daemonless container
engine for developing, managing, and running containers on
Linux. Podman has integrated CRIU and has better support for
container checkpoint than Docker [26]. As for other container
engines, LXD [27] supports container live migration in very lim-
ited scenarios. For example, the network interface card should
be removed to enable live migration of an alpine container.
Besides, containers working with systemd (e.g. Ubuntu since
version 16.10) could not be migrated,” either. OpenVZ [28] pro-
vides system-level containers. Its container migration includes
massive log files, slowing down the freezing stage. Besides, its
file transference time cannot be acquired,3 which is needed for
performance evaluation. As a result, Podman is chosen for the
case study.

The migrations are conducted between two Lenovo Think-
Center M910t, which have Intel(R) Core(TM) i7-6700 CPU
3.40 GHz and 16G memory. The two servers are connected with
1 Gbps Ethernet. We leverage Linux TC [29] to change the
bandwidth (from 200 Mbps to 1000 Mbps). We conduct mea-
surement on six typical scenarios: CPU-intensive, IO-intensive,
memory-intensive scenarios emulated by stress [30], file com-
pressing using tar [31], video transcoding using ffimpeg [32] and
real-time rendering using Glmark2 [33] (a widely used bench-
mark for OpenGL). Because CRIU doesn’t provide checkpoint
support for Graphical User Interface (GUI) applications [18],
Glmark?2 is only tested on VM migration. The VM used in the
experiment is configured with 6GB memory and 20GB shared
storage.

1) Virtual Machine Live Migration: From the measurement
results demonstrated in Table I, Fig. 5(a) and Fig. 5(b), we have
the following discoveries on VM migration. 1) High-frequency
memory writing will significantly deteriorate migration perfor-
mance. Compared with the Stress-CPU and Stress-10, Stress-
Mem witnesses at least x 10 downtime increase, x 23 migration
time increase and x 30 data transference increase. Note that, its

{Online].
xbzrle.txt

2[Online]. Available: https://github.com/Ixc/Ixd/issues/ 10672

3[Online]. Available: https://github.com/checkpoint-restore/criu/issues/ 1966

Available: https://github.com/qemu/qemu/blob/master/docs/

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

https://github.com/qemu/qemu/blob/master/docs/xbzrle.txt
https://github.com/qemu/qemu/blob/master/docs/xbzrle.txt
https://github.com/lxc/lxd/issues/10672
https://github.com/checkpoint-restore/criu/issues/1966

7088

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

TABLE I TABLE II
DATA TRANSFERENCE AMOUNT OF VM MIGRATION (GB) DATA TRANSFERENCE AMOUNT OF CONTAINER MIGRATION (MB)
Bandwidth | Stress- | Stress- | Stress- . Bandwidth | Stress- | Stress- | Stress- .

(Mbps) CPU 10 Mem Tar Video | Glmark2 (Mbps) CPU 0 Mern Tar Video
200 314 | 184 | 13026 | 11.80 | 5.30 5.00 200 0.16 030 | 17.14 | 5614.75 | 518.55
400 182 | 180 | 9222 | 716 | 344 4.80 400 0.16 030 | 1828 | 507042 | 504.40
600 178 | 184 | 6048 | 656 | 3.08 472 600 016 | 030 | 1672 | 4847.74 | 509.35
18(;)000 1;: 1;(2) :gzﬁ i;i iiz izg 800 0.16 0.30 17.67 4739.45 | 507.04

. 1000 0.16 0.30 18.06 | 4707.36 | 506.42

-
o
e

B Stess.CPU mEE Video mmm Stress-CPU mmm Video

= Stress 10 [r—— - e Stress-0 - Tar
— W Stress-Mem W Glmark2 T mmm Stress-Mem EEE Glmark2
0
k] E103
£ =
= c
< L
Z ®
3 510
=
200 400 600 800 1000 200 400 600 800 1000

Bandwidth(Mbps) Bandwidth(Mbps)

(a) Downtime. (b) Migration time.

Fig. 5. Performance of VM migration (y-axis in log scale).

data transference amount even reaches at least 9 times the size of
VM memory. 2) When bandwidth decreases from 1000 Mbps to
200 Mbps, all testing applications suffer from longer migration
time (at least x3.7). Meanwhile, Stress-CPU, Stress-Mem and
Video transfer atleast x 1.8 data. Tar has the most significant data
transference increment (x4.0). 3) Memory-writing-intensive
applications’ downtime is more sensitive to bandwidth changes.
Stress-Mem has the most significant increment (x 85), while Tar,
Video and Glmark2 rise x5.3, x2.2 and x2.4, respectively. In
contrast, Stress-CPU and Stress-10 keep the downtime between
60 ms and 95 ms. This is because low bandwidth increases
the nominal time for data transference. However, the memory
writing operation is still working at high frequency. As a result,
more dirty pages are generated during the increased time, which
means more data for re-transference. Finally, it is worth noting
that Glmark2’s downtime is at least 213 ms and the migration
time is at least 55 s, indicating that the performance of migrating
real-time rendering applications with VM is far from satisfac-
tory.

2) Container Live Migration: Container live migration relies
on the checkpoint and restoration functionality provided by
CRIU. The migration process follows such a pipeline: 1) Pre-
transfer mounted data. 2) Pull container images to the destination
node. 3) Checkpoint the running container at the source node. 4)
Transfer the dump files generated by CRIU during checkpoint
and the intermediate files generated by the application to the
destination node using rsync.* 5) Restore the container at the
destination node when all files are synchronized. Note that,
step 1) and step 2) can run simultaneously. But steps 3) to 5)
can only run sequentially. The measurement results of total
data transference amount, downtime and migration time are
demonstrated in Table II, Fig. 6(a) and (b), respectively. Besides,

4[Online]. Available: https:/linux.die.net/man/1/rsync

= Stress-CPU
W Stress-I0

= Tar
= Video

= Stress-CPU
W Stress-0

= Tar
. Video

= Stress-Mem mmm Stress-Mem

Downtime(s)
Migration Time(s)

200 400 600 800 1000 200 400 600 800
Bandwidth(Mbps) Bandwidth(Mbps)

1000

(a) Downtime. (b) Migration time.

Fig. 6. Performance of container migration (y-axis in log scale).
TABLE III
TIME USED IN DIFFERENT CONTAINER MIGRATION STAGE (S)
Bandwidth
(Mbps) 200 400 600 800 1000
Stress-CPU 2.39 2.52 2.45 2.31 2.73
Stress-10 2.13 2.19 2.15 2.16 247
Check-
it Stress-Mem | 15.61 | 16.63 | 15.19 | 16.25 | 16.74
1n
PO Tar 279 | 281 | 283 | 286 | 240
Video 5.24 5.18 5.24 5.10 5.45
Int Stress-CPU 0.26 0.26 0.26 0.25 0.26
nter-
? Stress-10 0.28 0.26 0.26 0.27 0.26
mediate
Fil Stress-Mem 1.01 0.66 0.50 0.49 0.45
ile
. Tar 62.29 | 19.29 9.69 6.16 5.33
Sending -
Video 4.12 1.89 1.44 1.10 1.03
Stress-CPU 0.87 0.79 0.83 0.82 0.91
Stress-10 1.11 1.05 1.04 1.03 1.07
Restore | Stress-Mem 4.79 4.83 4.29 5.16 4.53
Tar 1.01 1.02 0.95 0.99 2.29
Video 3.04 2.81 3.19 3.40 3.34

downtime is further divided into checkpoint time, intermediate
file sending time and restore time in Table III.

The tested applications can be divided into two categories
according to whether it is bandwidth-sensitive or memory writ-
ing frequency-sensitive. Tar is the only application that is in
the bandwidth-sensitive category. It witnesses x6.4 downtime
increment, X 3.7 migration time increment and x 1.19 data trans-
ference increment when bandwidth changes from 1000 Mbps to
200 Mbps. The downtime of 7ar mainly comes from interme-
diate file sending. Other applications are sensitive to memory
writing and belong to the other category. Their downtime has
little change (within 30%) as bandwidth decreases. Instead, their
downtime mainly comes from checkpoints and restorations.
These two processes take up more than 92% of downtime for

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

https://linux.die.net/man/1/rsync

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

Stress-CPU, Stress-10 and Stress-Mem while more than 67%
for Video. The time used for checkpoint and restoration is
mainly affected by memory writing frequency. The downtime
gaps between Stress-Mem and the other three applications are
significant, which is at least x2.39.

III. SYSTEM DESIGN
A. Overview

The key design goal is to further compress the freezing
process and reduce downtime under an imperceptible level. To
eliminate the service migration performance bottleneck brought
by peer-to-peer memory state copy, we propose a dual rendering-
based method for real-time rendering applications. Instead of
directly copying memory data from the source node, our method
makes full use of the global state in the cloud state server to
restore the rendering module state at the destination node. This
method jointly considers network switch and computation state
transference. It differs from previous methods in three folds.
First, it bypasses the direct memory copy process between edge
clouds. Second, the system works in an asynchronous mode.
The destination node gets synchronized with the source node
with the help of a cloud logic server. It does not need the source
node to freeze first. Third, the network switch is embedded in
the whole workflow and adapted to the architecture of the 5G
network.

The dual rendering mechanism brings new challenges both
in the cloud-edge state synchronization sessions and edge-UE
rendering sessions. On the cloud-edge side, dual rendering
requires two application instances at different edge clouds to
log into the cloud logic server using the same user account.
This breaks the basic account management principle that one
account can only have one instance logging into the system
at a time. Such a change may bring serious data conflict. In
order to guarantee data consistency in the system, we introduce
session priority, in which applications from edge clouds are
divided into two categories. The first one is the primary session
which has complete data read/write permission while the other
one is the secondary session which works in read-only mode.
The secondary session’s connecting edge cloud has no writing
permission and can only render images according to the states
acquired from the cloud logic server.

On the edge-UE side, one UE may connect to different edge
clouds simultaneously during the migration. Both edge clouds
will render images and stream video to the UE. In this dual
rendering phase, the edge cloud that has the primary session
works as chief pilot while the other one works in copilot
mode. Only the video from chief pilot, will be displayed on
the UE. In addition, the control flow of the UE will only be
sent to the chief pilot. The roles of edge clouds exchange in
the stream switch phase. Because the destination edge cloud
has been synchronized with the source edge cloud, the freezing
stage is compressed. It remains only one operation of switch-
ing video streams. Such a simplification can greatly reduce
downtime.

7089

| l Basic Core Network Functions | I Migration Manager | H
oY /\\/ Login Session
i Application Server | |Manager
H Instance B
Edge | _________....!
Streaming Selector, e imion Edge-end
Migration Agent Cloud | e rend
Agent Streaming Server Mfm"o" Service
Streaming Client gent Repository,
~——
5G Network
5G Network Interface Interface | WAN Interface | | WAN Interface |
UE Edge Cloud

Fig. 7. General architecture of CSM.

B. System Architecture

Fig. 7 shows the general architecture of the proposed method.
The solid line modules in the figure are the fixed part of the
system and the dotted line modules will change according to
applications.

In UE, the streaming client consists of components used
for video streaming, such as user input capture, video decoder
and input encoder, etc. The UE migration agent is in charge
of communicating with the core network and edge clouds for
migration control. The stream selector chooses video streams
decoded from the streaming client and decided which one can
be displayed on the UE front end.

In the edge cloud, an edge migration agent is deployed as
well. It works as an application function that connects to the core
network. It also serves as a migration controller in the edge cloud.
The edge-end application repository stores application images.
Applications that have service migration demands have to reg-
ister to the edge migration agent first to enable the migration
functionality. The edge migration agent invokes an application
instance during the migration preparation phase. The application
instance is the client end of the application deployed in the edge.
Its images are captured and encoded in the streaming server.
The encoded video streams will be transmitted to UE through
the 5G network. On the other hand, input flows from the UE
are decoded at the streaming server and sent to the application
instance.

Similarly, in the cloud data center, the back-end services
are stored in the cloud-end service repository. They should be
registered with the cloud migration agent in advance. A session
manager is added to the application back end. It works with
the login server to support dual rendering during the migration.
When dual-rendering is triggered, the destination edge cloud will
send requests to the login server first. If the login request is valid,
a new state synchronization session of the same user account
is created and restored in the session manager. The session
manager will maintain a session set for each user account. It will
decide which session is read-only and which one has permission
to write state data to the logic server.

In addition, a migration manager is deployed in the core
network, which is in charge of choosing destination edge clouds
and coordinating the 5G PDU sessions during the migration
process.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

7090

Algorithm 1: Session Management Algorithm.

Input: A state synchronization session s from user
account u;
1 Initialize the session set S;
2 if s not in S then

3 if user account w; does not login then
4 Create an empty set for this user;
5 Push session s into the set;
6 Mark s as the primary session;
7 else
Push session s into the set;
9 | Mark s as the secondary session;
10 else
11 if s is primary session then
12 L Transfer packets to logic server;
13 else
14 if s has switching signal then
15 Mark the current primary session as
secondary session;
16 Mark s as the primary session;
17 Transfer packets to logic server;
18 else
19 L Drop out packets from s;
C. Workflow

1) Migration Initialization: If the QOS becomes unaccept-
able as a result of user movement, the UE will send a service
migration request to the core network migration manager. Once
receiving the request, the system will enter the migration initial-
ization phase. The migration manager will choose a destination
edge cloud. After the destination edge cloud is selected, the
edge-end application repository will check if the image of the
application exists. If the image does not exist, it will be pulled
from the repository in the cloud. Then, the application will be
started at the edge.

2) Session Setup: Once the destination edge cloud is decided,
the migration manager will inform the edge migration agent in
the destination edge cloud to start a session setup procedure.
The session setup includes two operations. The first operation is
setting up 5G communication between UE and the destination
edge cloud. The 5G core network will trigger PDU session
setup procedure and set up a GPRS Tunneling Protocol User
plane (GTP-U) tunnel between the destination edge cloud and
the base station that the UE links to. The IP address of the
streaming server in the destination edge cloud will be sent to
the UE as soon as the new PDU session is set up. Note that, the
previous PDU session connecting to the source edge cloud is still
maintained and working for the existing rendering stream. The
second operation is setting up the state synchronization session
between the destination edge cloud and the remote cloud server.
The application instance will connect to the login server in the
cloud and try to log in with the same user account. Once the
login is permitted, a new state synchronization session will be

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

established and transferred to the session manager. The session
manager creates a session set for each user account the first
time the user succeeds in logging in. The first session will be
marked as the primary session. If other sessions of the same user
account are created, they will be marked as secondary sessions
by default and stored in the relevant session set. The details of
session permission management are shown in Algorithm 1.

3) State Synchronization: When a state synchronization ses-
sion between the edge-end application instance and the cloud-
end logic server is set up, the application instance begins to
synchronize states with the help of the cloud-end logic server.
The cloud logic server will first take a whole snapshot of the
current state. Then the snapshot is sent to the destination node
as the start point of synchronization. Then, state changes will
be sent to edge clouds. Note that, different sessions in the same
user account session set share the same state update information
in the downward direction. But in the upward direction, only
the primary session has the writing permission to update state
data in the logic server. Because the state broadcast contains
all the changes, the destination edge cloud and the source edge
cloud get synchronized indirectly, and the destination edge cloud
renders the same scene as that of the source edge cloud.

4) Dual Video Streaming: After the edge server gets synchro-
nized, the streaming server starts to capture the video. Then the
encoded stream will be streamed to the UE. The UE rendering
client will decode the video and send it to the stream selector.
At this stage, the destination edge is in copilot mode. Its video
stream will not be displayed until the stream configuration at the
streaming selector changes.

5) Stream Switch: After the stream from the destination node
is set up, UE will exchange the role of edge clouds by updating
the stream selector configuration. This brings three changes.
First, the destination edge becomes the chief pilot whose video
stream is displayed on the UE. Meanwhile, the source edge
cloud becomes the copilot. Second, UE operations are steered
to the destination node. Third, the destination node will send a
switching signal to the logic server. The session manager in the
cloud will mark this session as the primary session. The previous
primary session will be downgraded to the secondary session.

From the user’s perspective, the main source of downtime is
the stream switch process in the UE. Because computation state
synchronization and session setup are all finished in previous
phases, the freezing stage is largely simplified and the downtime
can be effectively reduced. However, even if the downtime has
been short enough, users may still suffer from frame flickers
(a visually abrupt change) at the moment of switching if the
frame difference between the two video streams is too signif-
icant. To address this issue, we introduce a triple mechanism,
namely smooth switching, to optimize the continuity of the
visuals during stream switching. The first is the SSIM threshold
mechanism, which is mainly used to ensure the similarity of
video frames. After stream switching can be performed, UE
checks each frame from the two sessions and calculates the
SSIM [19] of the two images. Only when the SSIM is greater
than the perset threshold, that is, the two images are sufficiently
similar, will it be allowed to enter the stream switching process.
The second is the frame sliding mechanism, which is mainly

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

used to avoid abrupt visual changes during switching. Due to
network latency differences, it is difficult for video frames from
the two sessions to be completely identical. To avoid screen
flashing during stream switching, we introduce a frame sliding
mechanism, where the image presented on the UE front-end is
a weighted linear combination of the two video frames after
switching begins.

Fout = aFd+BFs (4)
o= min(%, 1) 5)
3= max(l — %,0) (6)

where F; and F denote the frames from the destination edge
cloud and source edge cloud, respectively. F,,; denotes the
frame displayed on the UE front end. n(n =0,1,2,3,...)
denotes the frame number since the frame sliding starts and
N(N =1,2,3,...) is the size of sliding window. If N = 1, it
indicates that the video stream is switched without smooth slid-
ing. The third is the asynchronous one-frame buffer mechanism,
which flushes frames with significant differences in time to avoid
frame differences accumulating in the buffer due to network
jitter. UE creates a streaming client thread for each session,
and each streaming client thread maintains a buffer for storing
video frames obtained by it. There is only one streaming selector
thread on UE, which reads video frames from each streaming
client thread’s buffer. We impose the following constraints on
this data transfer process: 1) the buffer can only hold one frame;
2) the reading operation of the streaming selector does not clear
the buffer, and the buffer’s contents can only be overwritten by
its relevant streaming client thread.

6) Delayed Release: As soon as the switch is finished, a
countdown timer will be started. The copilot stream from the
source node will not be released immediately. Instead, it will
be kept alive until the countdown ends. The countdown timer
duration is configured by the migration manager deployed in
the core network. This delayed release mechanism is designed to
deal with the ping-pong effect. The ping-pong effect refers to the
phenomenon that service migration is triggered repeatedly be-
cause the latency varies near the migration threshold. The latency
fluctuation could be caused by user movement or network jitters.
For example, if the user moves back to the source edge cloud, itis
necessary to switch back to the source edge stream. The delayed
release configuration keeps the source edge working in copilot
mode for a while after the stream switch. Because the application
instance is kept synchronized, the previous steps from migration
initiation to dual video streaming can all be skipped. The second-
time migration only contains a stream switch. If another stream
switch is triggered, the countdown timer will be reset. A new
round of countdown starts as soon as the switch finishes. When
the timer goes to zero, the copilot session will be released and
the relevant edge cloud will terminate the application instance.

IV. SYSTEM IMPLEMENTATION

The implication of the system consists of three parts: 5G
network support system, streaming system and control system.

7091

We first build MiniEdgeCore, a test bed containing a simplified
5G core network system based on GTP5G project [34]. The user
plane of the system has a full user plane protocol stack, which
can set up PDU sessions between base station nodes and User
Plane Functions (UPFs). The control plane of the core network is
a simplified version. In the first stage, we’ve only implemented a
few most important network functions concerning PDU session
setup. To achieve a flexible network architecture, UEs, base
stations and UPFs are deployed in Mininet [35] hosts. Mininet
leverages Linux namespace to create a realistic virtual network
environment. It runs real kernel, switch and application codes.
By introducing Mininet, we can create different net topologies
and test realistic network streams. The links between UEs and
base stations deployed in Mininet are emulated by Ethernet.
Because PDU session re-establishment, which pertains to the
third layer of the network, is the primary concern of service
migration. The status of the wireless link is not the key indicator
in this problem and its management is independent of service
migration. This design helps to prevent the complicity brought
by wireless communication protocol stack and improve the
system’s flexibility.

The streaming system is implemented based on Gamingany-
where [6]. Gaminganywhere is an open-source cloud gaming
platform. It provides video and audio capturing on the server
side and operation capturing on the client side. In our system,
the Gaminganywhere server is deployed at the edge node and
serve as the streaming server. Its client is deployed in the UEs
to provide streaming client functions.

The control system includes the migration manager, the UE
migration agent, the edge migration agent and the streaming se-
lector. It implements the mechanisms in Section III with python
3.7.12. The communication among the migration manager, the
UE migration agent and the edge migration agent is conducted
using HTTP requests. Relevant restful interfaces are provided
as well.

V. EVALUATION
A. Experiment Setup

We conduct experiments on six Lenovo ThinkCenter M910t
servers. Each server has a 3.40 GHz Intel(R) Core(TM) i7-6700
CPU and 16G memory. Two of the servers are installed with
PVE v7.0-2, while the other four servers all work on Ubuntu
18.04.6 with kernel version 5.4.0-90-generic. These servers form
a three-tier system. The cloud tier has one server which runs the
backend logic server. The edge node tier consists of four servers
which are divided into two groups, i.e. the VM group and the
CSM group. The VM group consists of the two PVE servers.
The CSM group has two servers with Ubuntu 18.04.6. These
two groups of servers are in charge of rendering images and
audio and streaming them to UEs. The last server is deployed
with MiniEdgeCore and the control functions. Its UE nodes form
the UE tier of the system. UEs and edge servers are connected by
the user plane of MiniEdgeCore. Their data stream is forwarded
and steered by UPFs. The edge servers and cloud servers are
connected by TP-LINK TL-SG1008D Gigabit switch. Linux
TC is leveraged to limit bandwidth between edge servers.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

7092

Two multiplayer games are chosen to evaluate the perfor-
mance of the system. This first is Minetest,” which is an open-
source voxel game engine that provides various game mods with
multiplayer support. The second is multiplayer snake imple-
mented in Pygame [36]. Both of the games are tailored to support
CSM. The modifications are in four folds. First, the original same
account login restriction in the login phase is removed. Instead
of rejecting concurrent logins on the same game account, the
logic server will add the new login session to the session set
maintained for the same game account. Second, during game
playing, the real-time information about the primary session’s
location, perspective, inventory, and other details are sent to the
logic server and synchronized with secondary sessions. This
ensures that the primary and secondary sessions have consistent
information and identical game views. Third, it supports role
exchange of sessions during stream switch as described in Algo-
rithm 1. Forth, the game resource recycling process is modified.
The objective is to prevent sessions with the same user account
are affected due to resource destruction when one of the sessions
with the same account logs out.

Although VM-based, container-based and application-level
methods are proposed for service migration, VM is the main
tool used in real-world scenarios for real-time application mi-
gration [8]. All container migration methods fail to migrate real-
time rendering applications because CRIU cannot extract state
from GPU.° Besides, application-level methods are coupled to
their target applications. Most existing methods are designed
for client-server architecture applications. They do not apply to
cloud-edge-UE applications. As a result, we only evaluate the
performance of VM migration and CSM in this section.

B. Downtime

As is shown in Fig. 8(a), the downtime of different methods
shows huge differences. CSM keeps average downtime less than
12 ms for both snake and Minetest. VM migration’s downtime
is no less than 64 ms, which is far away from the requirement
of seamless migration. The performance gap between CSM
and VM in terms of migrating snake and Minetest is at least
x 5.5 and x15.5, respectively. Although pre-copy is used to
reduce downtime, VM migration is still limited by its sequential
working pipeline in the freezing stage. In contrast, CSM fin-
ishes destination node state synchronization and network session
setup before entering the freezing stage so that the downtime
is greatly compressed. It is also worth noting that, unlike VM
migration, the downtime difference between snake and Minetest
is quite slight (within 3 ms) when using CSM. This is because
CSM leverages state data in the cloud logic server instead of
direct peer-to-peer memory copy, and it will not be influenced
greatly by the memory writing frequency.

C. Migration Time

The main source of total migration time is different. For VM
migration, most of the time is spent in pre-copy. The pre-copy

5[Online]. Available: https://www.minetest.net/
©[Online]. Available: https://github.com/containers/podman/issues/12275

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

[
o
[

B Snake-VM
s Minetest-VM

B Snake-CSM
EmE Minetest-CSM

(
o
o

i

10t

Downtime(ms)

10°

200 400 600 800
Bandwidth(Mbps)

1000

(a) Downtime.

103

Emm Snake-VM
s Minetest-VM

mmm Snake-CSM
BN Minetest-CSM

102

Migration Time(s)

10°

200 400 600 800
Bandwidth(Mbps)

1000

(b) Migration time.

Fig. 8. Service migration performance (y-axis in log scale).

continues until the remained data is small enough for a quick
service pause and migration. As for CSM, the total migration
time mainly comes from informing and waiting for the des-
tination node to start the game. Consequently, VM migration
is sensitive to bandwidth. As shown in Fig. 8(b), the migration
time of VM increases rapidly when bandwidth goes down, (x 3.5
for snake and x4.2 for Minetest). When the bandwidth equals
200 Mbps, the migration time of migrating snake and Minetest
evenreach 78 s and 298 s, respectively. In contrast, regardless of
bandwidth change, CSM finishes migrating snake and Minetest
in less than 2.5 s and 4.6 s, respectively. This brings the follow-
ing advantages: First, it brings less bandwidth pressure on the
WAN between edges. Second, considering service migration is
triggered when the access latency starts to deteriorate, the QOS
can be improved in time through quick migration. Otherwise,
users have to tolerate the bad QOS during the long memory

copy.

D. Overhead

Service migration is an expensive operation. Massive CPU,
memory and network resources are exploited to migrate ser-
vice instances. Fig. 9 demonstrates the overhead of Minetest
instance migration using VM and CSM. All the experiments are
conducted with 1 Gbps network connection. In each experiment,
service instances will run 10 s before and after the migration.
There are three vertical dashed lines in subfigures of Fig. 9,
which denote the start of migration, the end of CSM migration
and the end of VM migration, respectively.

1) CPU Utilization: Fig. 9(a) demonstrates the CPU over-
head of both methods during migration. The CPU overhead
of CSM mainly comes from the dual rendering mechanism.
During the migration process, the CPU utilization of the source

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

https://www.minetest.net/
https://github.com/containers/podman/issues/12275

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

60 T T
i o
50 if . S
P oo %eves et teaeeettogqatssd 5
40 it £ S0
< —e— VM-Source L
< 30 ~#- VM-Destination i i
2 = CSM-Destination i I
6 -+4-- CSM-Source |
20 11
10 i
,.. H
R L S i
s I PYYR L JPPPIPPR
Start CSM End VM End
(a) CPU utilization.
m
Q
-§ 800 oo aan REREUP——
= H —e— VM-Source |
- | ~#- VM-Destination i
a 600 | = CSM-Destination i
ey H -#-- CSM-Source i
g | '
o 400) T i
= i Il i
= i 5 I o o i
200 . [ey
i [i
E Iy 0 . Il‘.‘)
o i 0 10 30
c
- Start CSM End VM End

(c) Ingress throughput.

Fig. 9. Service migration overhead.

edge cloud remains almost the same, while the CPU utilization
of the destination edge cloud will rapidly increase to around
50% and gradually decrease to 45%. CSM will keep such a
double CPU resource utilization until the source edge cloud
releases resources. In contrast, during VM migration, the CPU
utilization of the destination edge cloud is at a relatively low
level (on average5%). This part of CPU resources is mainly
used to control the pre-copy of memory state data. When the
pre-copy process is completed, the CPU utilization of the source
edge cloud decreases to zero rapidly. At the same time, the CPU
utilization of destination edge clouds sharply increases t034%
and maintains at this level to support running Minetest and keep
video streaming. Overall, during service migration, CSM has
a higher CPU overhead per unit of time. However, considering
that CSM has a much shorter migration time than VM, the CPU
overhead of CSM is acceptable.

2) Memory Usage: There is a huge difference in memory
usage between CSM and VM. In CSM, the increased memory
usage of destination edge clouds only includes the cost of starting
Minetest, and the average increase in memory usage throughout
the entire process is 1035 MB. In contrast, the memory usage
of destination edge clouds witnesses a linear growth for VM
migration, from the initial 1126 MB to the final 5084 MB. The
memory usage of VM is much larger than that of CSM. Due
to the need for a complete point-to-point copy of the VM’s
memory during the VM migration process, a large amount of
memory data, including the operating system state of the VM,
is copied. Meanwhile, due to the need to support the operation
of the operating system within the VM, the static memory usage
of the VM is also higher.

3) Network Throughput: The difference in network through-
put overhead is more significant. As shown in Fig. 9(c) and (d),
since the VM pre-copy is a point-to-point operation, the traffic

7093

7000 !
— csceee |
D O LN
wso001 i1
o
R40007 |7
= A R
>30007 L
[IR R T —e— VM-Source .mm,‘
£ 2000 b ~#- VM-Destination
g 1000 B -:_ ________ --@- CSM-Destination

|remsmmenei™ Saeint g CSM-Source

| 1

Start CSM End VM End

(b) Memory usage.

—e— VM-Source
—#- VM-Destination

@ CSM-Destination .\
e

|
|
|
! -4-- CSM-Source
|
i
|

i

Start CSM End

Egress Throughput (Mbps)

o

(d) Egress throughout.

TABLE IV
DATA TRANSFERENCE AMOUNT OF DIFFERENT METHODS (GB)

snake-VM | minetest-VM | snake-CSM | minetest-CSM
200 1.60 6.38 0 0
400 1.56 6.23 0 0
600 1.54 6.25 0 0
800 1.50 6.17 0 0
1000 1.50 6.22 0 0

of source edge cloud and destination edge cloud is symmetrical,
that is, the ingress throughput of the destination edge cloud is al-
most the same as the egress throughput of the source edge cloud,
both reaching over 800 Mbps. In the meanwhile, the ingress
throughput of the source edge cloud and the egress throughput
of the destination edge cloud is less than 5 Mbps, which is mainly
used for control information exchange during the migration
process. In comparison, the bandwidth consumption of CSM
is much smaller than that of VM. The egress throughput of
the source edge cloud and the destination edge cloud reaches
5.45 Mbps and12.80 Mbps, respectively. This traffic is mainly
used for video streams. The ingress throughput of both nodes,
containing user control signals, can be almost ignored.

As aresult, the peer-to-peer data transference between source
edge server and the destination edge server differ dramatically,
as well. As shown in Table IV, although only memory data are
transferred, the data amount of VM migration still reaches a level
above 1 GB. In specific, the transferred data of snake ranges from
1.5 GB to 1.6 GB. As for Minetest, it needs at least 6.17 GB
data transference to complete the migration. However, the peer-
to-peer data transference amount of CSM keeps zero for both
of the games. This is because CSM takes full advantage of the
state in the cloud server. It recovers states via the normal game

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

7094

1.0
—— SSIM=0.90
—— S5IM=0.88
0.81 __ ssim=o.85
—— S5IM=0.80
w 0.6
[a)]
© 0.4/
0.2
0.0

6 8 10 12 14
Downtime (ms)

(a) CDF of downtime.

Fig. 10. CDF of CSM with different SSIM threshold.

TABLE V
PERCENTAGE OF VOLUNTEERS CLAIM NOTICEABLE FLICKERS

Category Percentage
CSM 4.35%
Static 3.49%
No-Opt 92.17%
No-Sliding | 36.52%

logic interactions between the edge and the cloud. Note that,
PVE leverages shared storage to prevent disk data transference.
However, shared storage is not applicable between different edge
nodes because of the long latency. As a result, the data amount
will be much larger if disk data is also transferred.

E. Quality of User Experience

The quality of user experience is a subjective indicator. In
order to verify whether CSM can ensure user imperceptible
session switches, we recorded videos displayed at the UE during
the service migration process. Then we invited volunteers to
watch these video clips. The volunteers are unaware of the video
sources. After watching each video clip, they are asked to eval-
uate whether there is a noticeable flicker in the video. We have
received a total of 115 valid questionnaires, and the experimental
results are shown in Table V. The videos are divided into 4
categories. CSM uses our smooth switching mechanism. Static
is a completely static game scene. No-Opt directly switches
between two video streams without optimization. No-Sliding
only applies SSIM threshold and one-frame buffer mechanisms
and drops frame sliding mechanism. The experimental results
indicate that if switching directly between two video streams,
the session switch will be noticeable (with 92.17% of volunteers
reporting frame flickers). If the one-frame buffer and the SSIM
threshold were introduced, this number would be reduced to
36, 52%. With all three mechanisms being applied in CSM, only
4.35% of the volunteers reported frame flickers, which is close
to that of Static. This indicates that our design can guarantee a
good user experience.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

1.0 r
08
L 06
[a)
o4
—— SSIM=0.90
—— SSIM=0.88
0.2 —— SSIM=0.85
—— SSIM=0.80
0.0
100 102

Migration Time (s)

(b) CDF of migration time (X-axis in log scale).

F. SSIM Threshold

In theory, the higher the SSIM threshold, the better the user
experience it will be. Because a high SSIM threshold can ensure
that the frames from the source edge cloud and destination
edge cloud are as consistent as possible during the video stream
switching process. However, an excessively high SSIM thresh-
old may hinder the migration process. As shown in Fig. 10(a), all
the downtimes are between 5 ms and 14 ms after the streaming
switch has been triggered. The SSIM threshold is different, but
the downtime distributions are similar. However, there are sig-
nificant differences in the distribution of migration time (shown
in Fig. 10(b)). When SSIM is 0.80 or 0.85, migration time falls
between 4 s and 5 s. Although in most cases migration can still
be completed within 5 s, long-tail effects begin to appear after
SSIM exceeds 0.85. In a few cases, the migration may take
several tens of seconds. The migration time even reaches72.82 s
in extreme cases. Furthermore, the higher the SSIM value, the
more severe the situation. When SSIM is 0.90, even about 40% of
migration time exceeds 10 s. This shows that an excessively high
SSIM threshold will block streaming switches from occurring.
Based on the above experimental results, the SSIM threshold in
our CSM method is set to 0.85.

VI. DISCUSSION

Working with VM and container: CSM is not conflict with
VM and containers. It only provides an alternative method for
migration. The application distribution and deployment function
of VM and container can be maintained. In addition to the
performance improvement in terms of downtime, CSM can
be regarded as a supplement of VM and container. First, it
supports shared instance deployment. VM and container can
only migrate exclusive instances that only serve one user. If a
shared instance is migrated, the other users of the instance are
affected. Since CSM is application level, it could migrate one
user’s states without affecting other users that share the same
instance. Second, it makes up for the container’s inability to
migrate GUI applications and enables containers to be used for
deploying real-time rendering applications. This combination
makes full use of the flexible and lightweight feature of container
in application deployment and high migration performance of
CSM.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

Applicable application type: CSM assumes that there is a
logic server containing global state information. This deploy-
ment architecture, usually used in multi-user applications, sepa-
rates the global logic module and the rendering module by nature
and suit CSM well. However, not all applications conform to
this assumption. Some applications place partial state informa-
tion on the client to reduce information exchange, e.g., user’s
perspective. Another exception is the single-user application,
which does not have a central logic server at all. To make CSM
applicable to the exceptions mentioned above, modifications to
the applications should be made. For applications with partial
states at clients, the source edge cloud could temporarily send
local states to the global logic server during migration to enable
complete state synchronization. Such temporary state sharing
has been implemented in the modified Minetest used in the
evaluation. The user’s perspective states are sent to the logic
server first and then synchronized to secondary sessions to
guarantee an identical view. For single-user applications, the
rendering model and the logic model could be decoupled to
make them similar to multi-user applications. As a result, the
logic model can play a role similar to the cloud logic server in
multi-user applications. Besides, a network interface should be
provided for cross-server state synchronization.

Necessary modification to applications: Since CSM is an
application-level method, the applications should be modified to
make CSM applicable. The good news is that the core logic of the
application is not affected. The developers only need to apply the
session management mechanism mentioned in Session III-C2 to
support copilot session. This will allow one user account to log
in simultaneously at different places during the migration and
enable the dual rendering process.

VII. RELATED WORK

VM live migration is widely used in cloud data centers first.
With the emergence of mobile edge computing, massive work
has been conducted to improve the VM migration performance.
Kiryong Ha et al. [15] propose VM migration to solve the
access latency deterioration resulted from user mobility. They
focus on reducing transfer data size and total migration time
leveraging difference operation between running VM at source
node and base VM at the destination node. In another work,
Kiryong Ha et al. [37] propose an agile edge computing system
to cope with situations including sudden user increment, edge
device failure and user movement. They leverage VM to conduct
migration and guarantee safety, multi-tenant isolation and ease
software provision. Takaaki Fukai et al. [38] point out that live
migration of bare-metal services is not supported since such a
functionality relies on virtualization software. They implement
a thin hypervisor which is only in charge of the process of
migration. Such a thin hypervisor exposes hardware directly
to the guest operating system so that it can achieve the same
performance as that of original bare-metal systems. Pre-copy [9],
[39] and post-copy [14] are the most widely used mechanisms
in VM live migration. Zhong Wang et al. propose Ada-copy [40]
which adaptively select the appropriate migration method based
on different dirty page rate to reduce migration time.

7095

Research on container live migration is based on checkpoint
and restoration provided by CRIU [13].

Pekka Karhula et al. [41] use container checkpoint to make
it possible to apply function as a service on IoT devices and
enable service migration among devices. They have shown that
compared with Docker pause, container checkpoint is more
memory-saving and increases the number of long-running func-
tions running on one IoT device. Keerthana Govindaraj and
Alexander Artemenko [42] focus on guaranteeing the safety
and timely operation of factory automation applications. They
propose redundancy migration, which leverages checkpoint,
packets buffer replay to reduce downtime during seamless ser-
vice migration. Lele Ma et al. [10], [12] discover that transfer-
ring the whole image brings extra file system synchronization
overhead. To mitigate this problem, they propose to take full
advantage of the container’s layered structure and only transfer
the top layer as well as runtime memory during migration, which
significantly reduces migration time. Similarly, Andrew Machen
et al. [43] propose a three-layer model to reduce downtime of
live migration. In their model, a service consists of three layers,
i.e. a base layer that includes guest OS, an application layer
that contains application files and an instance layer containing
running states. During a migration, only the instance layer is
transferred, which significantly reduce the amount of data to be
transferred. Instead of trying to reduce the data amount in the
migration, Piush K Sinha et al. [44] propose to leverage memory
ownership relocation to simplify the process of live migration.
However, the source VM and the destination VM is required to
be on the same host to make the relocation applicable.

In addition to VM-based and container-based migration meth-
ods, application-level migration methods are studied to further
reduce the transferred data amount. Patrik J. Braun et al. [45]
implement an application-level migration which separates state
data from the main logic. Such a method can reduce migration
time. R. Bruschi et al. [46] migrate virtualized network functions
leveraging an SDN-based packet duplication mechanism. A
lightweight heuristic algorithm is also proposed to optimize
the orchestration of new service instances placement. Michael
Gundall et al. [47] achieve an application-level migration con-
taining two options. The first option leverage packet buffering to
realize a parallel migration methodology. If the first option is not
applicable, a CRIU-based method will be used. Tung V. Doan
et al. [48] achieve seamless service migration in autonomous
driving scenarios. Their framework periodically synchronizes
application state among edge nodes and proactively migrates ser-
vice instances to the synchronized nodes. A. Gember-Jacobson
et al. [49] propose a two-phase scheme for updating network
forwarding state in OpenNF. A dual-service method is used
for process migration, which requires a centralized cache to
support sequentially executed operations. Application-level ser-
vice migration methods are usually specifically applicable to
its target application. The aforementioned methods are effective
but not designed for multi-user real-time rendering applications.
Besides, 5G network session switches are not considered, either.

Network management in service migration is also studied. Ex-
isting work focuses on overcoming migration obstacles brought
by cross-domain network communication. Yuqing Qiu et al. [50]

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

7096

focus on possible network failures during migration data be-
ing transferred through WAN. They propose to leverage the
multi-path TCP protocol to improve the resilience of service
migration between different edge nodes. Hany Assasa et al. [51]
proposed a Platform as a Service framework that supports UE
context migration edge clouds. Rami Akrem Addad et al. [52]
focus on the inconvenience of inter-edge migration brought by
the infeasibility of ARP broadcasting over the Internet. They
introduce SDN-based methods to handle network issues. Jachee
Ha et al. [53] leverage distributed hash table and live migration
access router to enable the WAN to support VM and container
migration between edge nodes. Compared with these methods,
cross-domain network communication is not a problem in our
method because peer-to-peer data copy is bypassed.

VIII. CONCLUSION

Reducing downtime is the key challenge of achieving im-
perceptible service migration. We show that because of the
complicated memory copy operation and the unavoidable data
transference, it is hard to reduce the downtime of VM live
migration and container live migration to a degree that can
satisfy the requirement of real-time rendering applications. We
present CSM, an application-level service migration method that
takes both computation state migration and 5G user plane PDU
session switch into consideration. In order to reduce service
migration downtime, CSM takes advantage of global state data
in the cloud logic server and synchronize states between edge
clouds via dual rendering. This bypasses the memory copy
mechanism and significantly simplifies the freezing stage. A UE-
centric migration switch management mechanism is proposed
to achieve well-coordinated network switch and computation
state migration, and a smooth switching mechanism is lever-
aged to guarantee user experiences during migration. CSM is
implemented and evaluated in a system with a 5G network and
application streaming capabilities. The experiment results show
that CSM successfully achieves imperceptible migration with
downtimes lower than 14 ms when migrating the tested real-time
rendering applications. The cross-edge data transference is even
reduced to zero.

REFERENCES

[11 Q. Yu,J.Ren, Y. Fu, Y. Li, and W. Zhang, “Cybertwin: An origin of next
generation network architecture,” IEEE Wireless Commun., vol. 26, no. 6,
pp. 111-117, Dec. 2019.

[2] iLab, “Cloud VR network solution white paper,” Hua Wei iLab, Tech.
Rep., 2019. [Online]. Available: https://www.huawei.com/minisite/pdf/
ilab/cloud_vr_network_solution_white_paper_en.pdf

[3] iLab, “Cloud VR black edge and network delay relationship white
paper,” Hua Wei iLab, Tech. Rep., 2019. [Online]. Available:
https://www-file.huawei.com/-/media/corporate/pdf/ilab/2019/cloud-
vr-blackline-network-delay-en-v1.pdf

[4] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(RTSP),” 1998. [Online]. Available: https://www.ietf.org/rfc/rfc2326.txt

[5] R.Mallipeddi and M. Srivastava, “Real time messaging protocol (RTMP).”
[Online]. Available: https://rtmp.veriskope.com/docs/spec/

[6] C.-Y.Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu, “Gamin-
gAnywhere: The first open source cloud gaming system,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 10, no. Is, pp. 10:1-10: 25,
Jan. 2014.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

[7]1 T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge comput-
ing,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333-2345,
Oct. 2018.

[8] iLab, “Cloud VR solution white paper,” Hua Wei iLab, Tech. Rep.,

2018. [Online]. Available: https://www.huawei.com/minisite/pdf/ilab/

cloud_vr_network_solution_white_paper_en.pdf

C. Clark et al., “Live migration of virtual machines,” Proc. Sympos. Netw.

Syst. Des. Implementation, vol. 2, pp. 273-286, 2005.

[10] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in Proc. IEEE/ACM 2nd Symp. Edge
Comput., 2017, pp. 11:1-11:13.

[11] S. Stoyanov and M.J. Kollingbaum, “Efficient live migration of Linux
containers,” in High Performance Computing, ser. Lecture Notes in Com-
puter Science, R. Yokota, M.J. WeilandShalf, and S. Alam eds., Berlin,
Germany: Springer, 2018, pp. 184-193.

[12] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge ser-
vices leveraging container layered storage,” IEEE Trans. Mobile Comput.,
vol. 18, no. 9, pp. 2020-2033, Sep. 2019.

[13] CRIU, “Main page — CRIU,” 2022. [Online]. Available: https://www.criu.
org

[14] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” ACM SIGOPS Operating Syst. Rev., vol. 43, no. 3,
pp. 14-26, Jul. 2009.

[15] K. Haet al., “Adaptive VM handoff across cloudlets,” Tech. Rep. CMU-
CS-15-113, 2015.

[16] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, “CEPH: A scalable, high-performance distributed file sys-
tem,” in Proc. Symp. Operating Syst. Des. Implementation, 2006,
pp- 307-320.

[17] L. NFS, “Main page — Linux NFS,” 2022. [Online]. Available: https://
linux-nfs.org/wiki/index.php

[18] CRIU, “What cannot be checkpointed,” 2022. [Online]. Available: https:
//criu.org/What_cannot_be_checkpointed

[19] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Trans. Image
Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

[20] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1272-1288,
Jun. 2019.

[21] Z.Rejiba, X. Masip-Bruin, and E. Marin-Tordera, “A survey on mobility-
induced service migration in the fog, edge, and related computing
paradigms,” ACM Comput. Surv.,vol. 52,no.5, pp. 90:1-90: 33, Sep. 2019.

[22] Proxmox VE, “Main page —proxmox virtual environment,” 2022. [Online].
Available: https://pve.proxmox.com/mediawiki/index.php

[23] Podman, “Main page — podman,” 2022. [Online]. Available: https:/
podman.io/

[24] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proc. Annu.
Conf. USENIX Annu. Tech. Conf., 2005, Art. no. 41.

[25] A.Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: The linux
virtual machine monitor,” Proc. Linux Sympos., vol. 1, no. 8, pp. 225-230,
Jul. 2007.

[26] D. Merkel, “Docker: Lightweight linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, no. 239, 2014, Art. no. 2.

[27] LXD, “Main page — LXD,” 2022. [Online]. Available: https://
linuxcontainers.org/1xd/

[28] OpenVZ, “Main page — OpenVZ,” 2022. [Online]. Available: https:
/lopenvz.org/

[29] TC, “TC - linux manual page,” 2023. [Online]. Available: https://man7.
org/linux/man-pages/man8/tc.8.html

[30] Stress, “Stress - linux man page,” 2023. [Online]. Available: https://linux.
die.net/man/1/stress

[31] Tar, “Tar - linux man page,” 2023. [Online]. Available: https://linux.die.
net/man/1/tar

[32] S. Tomar, “Converting video formats with FFmpeg,” Linux J., vol. 2006,
no. 146, 2006, Art. no. 10.

[33] Glmark2, “Glmark2 - an opengl 2.0 and es 2.0 benchmark,” 2023. [Online].
Available: https://github.com/glmark2/glmark2

[34] PrinzOwO, “Main page — GTP5G,” 2022. [Online]. Available: https://
github.com/PrinzOwO/gtp5g

[35] Mininet, “Main page —Mininet,” 2022. [Online]. Available: http://mininet.
org/

[36] Pygame, “Main page — Pygame,” 2022. [Online]. Available: https:/www.
pygame.org

[9

—

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

https://www.huawei.com/minisite/pdf/ilab/cloud_vr_network_solution_white_paper_en.pdf
https://www.huawei.com/minisite/pdf/ilab/cloud_vr_network_solution_white_paper_en.pdf
https://www-file.huawei.com/-/media/corporate/pdf/ilab/2019/cloud-vr-blackline-network-delay-en-v1.pdf
https://www-file.huawei.com/-/media/corporate/pdf/ilab/2019/cloud-vr-blackline-network-delay-en-v1.pdf
https://www.ietf.org/rfc/rfc2326.txt
https://rtmp.veriskope.com/docs/spec/
https://www.huawei.com/minisite/pdf/ilab/cloud_vr_network_solution_white_paper_en.pdf
https://www.huawei.com/minisite/pdf/ilab/cloud_vr_network_solution_white_paper_en.pdf
https://www.criu.org
https://www.criu.org
https://linux-nfs.org/wiki/index.php
https://linux-nfs.org/wiki/index.php
https://criu.org/What_cannot_be_checkpointed
https://criu.org/What_cannot_be_checkpointed
https://pve.proxmox.com/mediawiki/index.php
https://podman.io/
https://podman.io/
https://linuxcontainers.org/lxd/
https://linuxcontainers.org/lxd/
https://openvz.org/
https://openvz.org/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress
https://linux.die.net/man/1/tar
https://linux.die.net/man/1/tar
https://github.com/glmark2/glmark2
https://github.com/PrinzOwO/gtp5g
https://github.com/PrinzOwO/gtp5g
http://mininet.org/
http://mininet.org/
https://www.pygame.org
https://www.pygame.org

LI et al.: SEAMLESS CROSS-EDGE SERVICE MIGRATION FOR REAL-TIME RENDERING APPLICATIONS

[37] K. Ha et al., “You can teach elephants to dance: Agile VM handoff
for edge computing,” in Proc. IEEE/ACM Symp. Edge Comput., 2017,
pp. 1-14.

T. Fukai, T. Shinagawa, and K. Kato, “Live migration in bare-metal
clouds,” IEEE Trans. Cloud Comput., vol. 9, no. 1, pp. 226-239,
Jan./Mar. 2021.

M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf., 2005,
Art. no. 25.

Z. Wang et al., “Ada-copy: An adaptive memory copy strategy for virtual
machine live migration,” in Proc. IEEE Int. Conf. Parallel Distrib. Syst.,
2017, pp. 461-468.

P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and migration
of IoT edge functions,” in Proc. Int. Workshop Edge Syst. Analytics Netw.,
2019, pp. 60-65.

K. Govindaraj and A. Artemenko, “Container live migration for latency
critical industrial applications on edge computing,” in Proc. IEEE Int.
Conf. Emerg. Technol. Factory Automat., 2018, pp. 83-90.

A.Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live service
migration in mobile edge clouds,” IEEE Wireless Commun., vol. 25, no. 1,
pp. 140-147, Feb. 2018.

P. K. Sinha, S. S. Doddamani, H. Lu, and K. Gopalan, “mWarp:
Accelerating intra-host live container migration via memory warp-
ing,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2019,
pp. 508-513.

P.J. Braun, S. Pandi, R.-S. Schmoll, and F. H. P. Fitzek, “On the study and
deployment of mobile edge cloud for tactile internet using a 5G gaming
application,” in Proc. IEEE Annu. Consum. Commun. Netw. Conf., 2017,
pp. 154-159.

R. Bruschi, F. Davoli, P. Lago, C. Lombardo, and J. F. Pajo, “Personal
services placement and low-latency migration in edge computing environ-
ments,” in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined
Netw., 2018, pp. 1-6.

M. Gundall, J. Stegmann, M. Reichardt, and H. D. Schotten, “Downtime
optimized live migration of industrial real-time control services,” in Proc.
Int. Sympos. Indus. Elec., 2022, pp. 253-260.

T. V. Doan et al., “Seamless service migration framework for autonomous
driving in mobile edge cloud,” in Proc. Annu. Consum. Commun. Netw.
Conf., 2020, pp. 1-2.

A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 163-174, Aug. 2014.

Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “LXC container migration
in cloudlets under multipath TCP,” in Proc. IEEE Annu. Comput. Softw.
Appl. Conf., 2017, pp. 31-36.

H. Assasa, S. V. Yadhav, and L. Westberg, “Service mobility in
mobile networks,” in Proc. IEEE Int. Conf. Cloud Comput., 2015,
pp- 397-404.

R. A. Addad, D. L. C. Dutra, T. Taleb, M. Bagaa, and H. Flinck,
“MIRA!: An SDN-Based framework for cross-domain fast migration of
ultra-low latency 5G services,” in Proc. IEEE Glob. Commun. Conf., 2018,
pp. 1-6.

J. Ha, J. Park, S. Han, and M. Kim, “Live migration of virtual machines
and containers over wide area networks with distributed mobility manage-
ment,” in Proc. EAI Int. Conf. Mobile Ubiquitous Syst.: Comput. Netw.
Serv., 2018, pp. 264-273.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

Yuanzhe Li received the PhD degree from the State
Key Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecommu-
nications (BUPT), in 2022. He is a postdoc with the
= Institute for AI Industry Research (AIR), Tsinghua
University. His work won the best paper award from
CollaborateCom 2022. His research interests include
mobile edge computing, cloud computing, and ser-
vice computing.

7097

Shangguang Wang (Senior Member, IEEE) is a pro-

fessor with the School of Computer Science, Bei-

jing University of Posts and Telecommunications,

China. He is the founder&chief scientist of Tiansuan

Constellation. He is also deputy dean with Beiyou

Shenzhen Institute, and Director with Star Network

and Intelligence Computing Laboratory, China. His

: research interests include service computing, mo-

< bile edge computing, cloud computing, and satel-

‘ : lite computing. He is currently serving as chair of

IEEE Technical Community on Services Computing

(TCSVC), and vice chair of IEEE Technical Community on Cloud Computing.

He also served as General Chairs or Program Chairs of 10+ IEEE conferences,

advisor/associate editors of several journals. He is a Fellow of the IET. More
details could be found by http://sguangwang. org/

Yuanchun Li (Member, IEEE) received the BS and
PhD degrees in computer science from Peking Uni-
versity, and was a senior researcher with Microsoft
Research Asia. He is a research Assistant Professor
with the Institute for Al Industry Research (AIR),
Tsinghua University. His research interests lie in the
efficiency and reliability of edge Al systems. His work
won the UbiComp Honorable Mention Award and IS-
EUD Best Paper Award, and the related systems and
tools are widely used in the open-source community.
He is a member of ACM.

Ao Zhou (Member, IEEE) is an associate professor
with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications, China. Her research inter-
ests include service computing, cloud computing, and
mobile edge computing. She is a PT or Co-PI of several
network service-involved research projects funded by
National Key Research and Development Program
of China, National Natural Science Foundation of
China, and Key Research and Development Program
of Guangdong Province. She has published more than
50 papers, and received the best paper award from IEEE SCC 2021. Her recent
work can be found on premier journals such as IEEE Transactions on Services
Computing, IEEE Transactions on Mobile Computing, IEEE Transactions on
Cloud Computing, IEEE Transactions on Emerging Topics in Computing, and
premier conference such as WWW, INFOCOM, ICWS. She served as TPC
Chair of IEEE DATACOM 2021, IEEE SAGC 2020, CBPM 2020, and Collab-
orateCom 2016, etc. She was awarded the Rising Star Award of IEEE Technical
Committee on Cloud Computing, and the First Prize of WU WEN JUN Al
Science & Technology Award of China.

Mengwei Xu (Member, IEEE) received the BS de-
gree in 2015 and the PhD degree in 2020 from the
Department of Computer Science and Technology,
Peking University. He is an assistant professor in
the computer science Department with the Beijing
University of Posts and Telecommunications. His
research interests cover the broad areas of mobile
computing, edge computing, artificial intelligence,
and system software. Web page: https://xumengwei.
github.io.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

http://sguangwang
https://xumengwei.github.io
https://xumengwei.github.io

Xiao Ma (Member, IEEE) received the PhD degree
in Department of Computer Science and Technology
from Tsinghua University, Beijing, China, in 2018.
She is currently a lecturer with the State Key Lab-
oratory of Networking and Switching Technology,
BUPT. From 2016 t0 2017, she visited the Department
of Electrical and Computer Engineering, University
of Waterloo, Canada. Her research interests include
edge computing and satellite computing.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Yunxin Liu (Senior Member, IEEE) received the BS
and MS degrees from Tsinghua University, and Uni-
versity of Science and Technology of China (USTC),
respectively, and the PhD degree from Shanghai Jiao
Tong University (SJTU). He is a guoqiang profes-
sor with Institute for AI Industry Research (AIR),
Tsinghua University. He was a principal research
manager with Microsoft Research Asia (MSRA). His
research interests are mobile computing and edge
computing. He received MobiSys 2021 Best Paper
Award, SenSys 2018 Best Paper Runner-up Award,

MobiCom 2015 Best Demo Award, and PhoneSense 2011 Best Paper Award.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 03,2025 at 01:45:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

