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Abstract—Deep learning (DL) based Wi-Fi sensing has wit-
nessed great development in recent years. Although decent results
have been achieved in certain scenarios, Wi-Fi based activity
recognition is still difficult to deploy in real smart homes due
to the limited cross-environment adaptability, i.e. a well-trained
Wi-Fi sensing neural network in one environment is hard to
adapt to other environments. To address this challenge, we
propose ADAWIFI, a DL-based Wi-Fi sensing framework that
allows multiple Internet-of-Things (IoT) devices to collaborate
and adapt to various environments effectively. The key innovation
of ADAWIFI includes a collective sensing model architecture
that utilizes complementary information between distinct devices
and avoids the biased perception of individual sensors and an
accompanying model adaptation technique that can transfer
the sensing model to new environments with limited data. We
evaluate our system on a public dataset and a custom dataset
collected from three complex sensing environments. The results
demonstrate that ADAWIFI is able to achieve significantly better
sensing adaptation effectiveness (e.g. 30% higher accuracy with
one-shot adaptation) as compared with state-of-the-art baselines.

Index Terms—Wi-Fi sensing, Deep learning, Domain adapta-
tion, IoT devices, Smart home.

I. INTRODUCTION

RECENT years have witnessed the rapid development
of wireless communication technology and large-scale

adoption of Wi-Fi based Internet-of-Things (IoT) devices. The
digital signals transmitted and received by these devices could
be used to sense our behavior, which enables many useful
wireless sensing applications such as gesture recognition [1]–
[4], sleep monitoring [5]–[7], fall detection [8]–[10], indoor
localization [11]–[14], etc. Compared with traditional sensing
methods, i.e. camera and inertial measurement unit (IMU), Wi-
Fi sensing is contactless and alleviates people’s concerns about
privacy leakage [15], [16]. Moreover, due to the low cost of
Wi-Fi chips and the popularity of Wi-Fi devices [17], [18], it
is a very economic solution to achieve ubiquitous perception.
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In smart home scenarios, appliance companies expect their
products is able to follow the user’s gestures and actions
to respond accordingly, i.e. when users want to turn on the
television, they just need to wave at it. Therefore, gesture
recognition is regarded as an important issue in both academia
and industry among various wireless sensing applications.

Recent advancements in artificial intelligence (AI) and deep
learning (DL) have simplified the development of sensing
applications through model training with wireless signals
[19]–[22]. The deep learning-based method offers a crucial
benefit of automatically identifying high-dimensional patterns
from data. Prior to the widespread adoption of deep learn-
ing, traditional approaches focused on complex mathematical
transformations to obtain clear features from raw signals.
As sensing tasks become more diverse, deep learning-based
sensing technology will increasingly play a vital role in smart
home scenarios.

Wireless sensing technology shows great potential but faces
challenges in practical deployment. Wi-Fi signals are impacted
by reflection, diffraction, and scattering during transmission,
conveying information about both the target object and the
environment. Even slight disturbances, such as movement of
surrounding objects, can significantly alter the received signal.
Especially when the same activity is performed in different
environments, the signal will be distorted severely due to the
changes in signal propagation paths, which is called ’domain
shift’ problem [23]–[25]. The key challenge in Wi-Fi sensing
deployment is achieving cross-environment adaptability, where
a model developed in known environments can efficiently and
effectively adapt to unseen environments.

Pioneering works have made efforts to mitigate the domain
shift problem through various methods. Some propose utiliz-
ing the characteristics of the signal itself to obtain domain-
independent features through mathematical calculations [26],
[27]. However, extracting such features necessitates substantial
expert knowledge and prior understanding of deployment
details. Recent techniques focus on designing deep learn-
ing models, particularly using adversarial learning to elimi-
nate environment and subject-specific information [28]–[30].
However, collecting a large amount of unlabeled data for
this approach is time-consuming. Another method is meta-
learning [23], [24], [31], [32], leveraging abundant samples
and task experiences from the source domain to adapt to the
target domain more rapidly. However, this approach relies
on the availability of a sufficient number of meta-training
tasks with adequate task variability, which is not always the
case. Furthermore, meta-learning incurs computational costs
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during the pretraining phase compared to standard supervised
training. Therefore, effectively adapting to limited labeled data
and complex environments remains an ongoing challenge that
requires further improvement.

To overcome aforementioned practical drawbacks and lim-
itations, there are three challenges to motivate us to design
our system. The first challenge is deployment heterogeneity,
which refers to the fact that the number, location, capabilities,
and surroundings of IoT devices deployed in different environ-
ments may differ from each other significantly. For example,
the deployment of furniture and the number of connected
devices may be very personalized, making it difficult to design
one model that is able to effectively adapt to all environments.
The second challenge is label scarcity, which refers to the
fact that it could be difficult or even impossible to obtain large
amounts of labeled training data for deep sensing models. Col-
lecting and labeling data for Wi-Fi signals is time-consuming
and expensive, especially in the target environments (e.g. end-
users’ homes). Since deep sensing models are usually data-
hungry, it can be difficult to train/fine-tune the sensing models
in new environments with limited data. The third challenge
is the influence of low-quality signals. Unlike most in-lab
experiments where all transceivers have good sensing signal
quality, real environments are very likely to contain devices
with low-quality sensing data. This can be caused by a variety
of factors, such as poor hardware conditions and the distance
and obstacles between devices and sensing targets. Such low-
quality wireless signals may have a negative impact on the
deep sensing model during cross-environment adaptation if
they are treated equally with other good devices.

To this end, we introduce ADAWIFI, a learning-based
collaborative Wi-Fi sensing system that can be easily and
effectively adapted to unknown environments. Collaborative
sensing is defined as the utilization of multiple devices to
produce integrated observational results and avoid biased
perception of individual sensors for a given action. In this
paper, we take gesture recognition as an example which serves
as a fundamental facilitator for a diverse array of applications,
including but not limited to smart home systems, security
surveillance technologies, and virtual reality environments.
Our framework is based on a deployment-independent neural
network architecture that can aggregate high-level information
from multiple sensors and an accompanying model adaptation
method that can robustly adapt the sensing model to unknown
environments with few labels.

Specifically, the sensing model includes encoder, aggregator,
and classifier modules. Each encoder transforms sensor read-
ings into a fixed-length vector embedding, which are merged
by the aggregator and fed to the classifier. This architecture
permits sensor addition or removal without retraining the
model. We propose an adaptation method tailored to the
model, using a virtual environment to augment limited labeled
data. This method creates synthetic intermediate samples to
progressively transfer from the source environment to the
target environment. We further propose estimating signal qual-
ity by analyzing their contribution to collective predictions.
A two-stage method is adopted to achieve this, first finding
optimal sensor weights for highest accuracy, then tuning other

parameters with augmented data while fixing sensor weights.
We evaluate our approach on both a custom dataset collected

from home-like environments and a large public dataset,
Widar3.0 [26]. The results show that our framework can
achieve more than 80% adaptation accuracy in unknown
environments with very few labeled samples, e.g. 1-10 shots,
significantly outperforming the state-of-the-art baselines [28],
[29], [31]–[33]. Our system is robust against low-quality
sensors in the target domain, where the accuracy drop caused
by low-quality sensors is less than 5%. We also demonstrate
the high flexibility and low overhead of our system based on
an implementation with Raspberry Pi.

In summary, we make the following technical contributions
in this paper:

1) We introduce a generic neural network architecture for
sensing user activities with multiple Wi-Fi devices, which
can be applied to different homes with heterogeneous
device deployments.

2) We design a cross-environment sensing system adap-
tation method based on the collective sensing model.
The adaptation requires very few labeled samples in the
target environment and can effectively resist low-quality
sensors.

3) We demonstrate the good performance of our approach
through experiments on both a custom dataset and an
open dataset. The source code and the dataset will be
released.

In the following of the paper, Section II introduces related
work of Wi-Fi sensing. Section III demonstrates our motiva-
tional study and the detailed design of ADAWIFI is described
in Section IV. The experimental results of the evaluation are
presented in Section V. Discussion and conclusion are reported
in Section VI and VII respectively.

II. RELATED WORK

In this section, We first introduce background of Wi-Fi sens-
ing technology and then select representative domain adap-
tation methods previously used to address cross-environment
problem to better understand the limitations of existing work.

A. Wi-Fi based Sensing

Using Wi-Fi signals for sensing has been an attractive and
popular research direction in the mobile community due to
various benefits including ubiquitous deployment, low cost,
and privacy friendliness [20], [21], [34].

Received Signal Strength Indicator (RSSI) or Channel State
Information (CSI) are commonly extracted from Wi-Fi de-
vices. While RSSI had been initially preferred for its high
accuracy in indoor localization [35] and simpler application in
human activity recognition [36], CSI is more widely used due
to its capacity for finer sensing granularity, greater deployment
cost-effectiveness, and better resistance to multipath inter-
ference [19]. Furthermore, processed amplitude information
derived from CSI has been applied to successfully extract
human activities such as walking and running [37], [38],
although the presence of noise in CSI signals can significantly
affect the accuracy of the recognition results. To address this
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limitation, researchers have developed more comprehensive
methods, such as CARM [39], which quantitatively corre-
lates CSI value dynamics with human movement speeds.
Other approaches, such as Fresnel zone model [40], have
theoretically demonstrated the feasibility of decimeter-scale
activity recognition. Moreover, the Doppler Frequency Shift
(DFS) technique, transforms CSI data from time-domain to
frequency-domain, providing access to a clearer analysis of
frequency composition for comprehensive sensing of complex
tasks [41].

B. Cross-environment Sensing Adaptation

Cross-environment sensing adaptation refers to the ability
of a sensing system to perform effectively across different
environments. The need for cross-environment sensing arises
due to the inherent variations and differences of signals that
exist between different environments. Prior approaches have
attempted to address the challenges of cross-environment
sensing adaptation from different perspectives [25], [42]–
[44], mainly focusing on extracting environment-independent
features from sensing data or adapting the pretrained sensing
model to new environments with little effort [45]–[48].

For the viewpoint of extracting environment-independent
features, it holds that signals in both the original and target
domains have inherent characteristics. In other words, if the
noise interference in different environments can be eliminated,
environment-independent features can be extracted. Some
works model the physical characteristics of signals and obtain
a new feature through complex mathematical calculations and
expert knowledge in the field of communication. Widar3.0 [26]
proposes body-velocity profile (BVP), an advanced feature
extracted from CSI that is domain-independent. However,
computing BVP requires much prior knowledge, including
the user’s location, orientation, etc., which restricts its us-
age scenarios. Adversarial learning is utilized to learn an
environment-independent feature encoder [28], [29] in recent
years. However, getting a unified representation across diverse
environments requires abundant data (e.g. hundreds of unla-
beled or well-segmented samples) from the target environment,
which is not practical in real-world scenarios.

For the perspective of adapting the pretrained sensing model
to new environments with little effort, it proposes the design
of improved algorithms to achieve adaptation with limited data
based on the pretrained model in the source domain. Among
them, few-shot learning mainly follows the paradigm of meta-
learning [49] which teaches DL models how to learn from
hundreds of sampled tasks from source domain and generalize
to new environments. For instance, RFNet [31] and ProtoNet
[32] introduce a metric-based meta-learning framework that
learns a metric function from source environments which can
be used to assemble the suitable sensing model in the target
domain. MetaSense [33] applies meta-learning based on the
MAML algorithm [50] to update the deep sensing model for
new conditions. The authors in [23], [24] make improvements
through data augmentation, designing better loss functions and
model architectures, based on classic meta-learning models.
However, meta-learning usually requires a number of domains
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Fig. 1: Performance degradation caused by cross-environment
and low-quality signals for prior sensing adaptation Work.

of training data to be effective. Meanwhile, meta-learning
algorithms are very unstable during training [51]. Current
studies in the ML area also find that meta-learning may be
ineffective in realistic scenarios [52], [53] when solving cross-
domain tasks, and even be inferior to simple fine-tuning, which
limits the practicality of such approaches in a real deployment.

In general, due to the fundamental limitations arising from
domain dependencies of signals and the inherent drawbacks of
the model itself, the utilization of the aforementioned methods
remains limited for achieving generalization across different
domains.

III. MOTIVATION

To motivate the design of ADAWIFI, we implement the
motivational study in this section. We conduct a series of pilot
experiments to analyze the difficulties of applying learning-
based Wi-Fi sensing across environments. The experiments
are conducted on a well-known public Wi-Fi sensing dataset,
Widar3.0 [26]. It contains Wi-Fi DFS profiles corresponding
to around 250K gesture samples, collected from 3 indoor
environments with 6 Wi-Fi links in a 2m×2m sensing area.

Cross-Environment Performance Degradation. We exam-
ine how the sensing model trained in one environment would
perform in another environment. Specifically, we select two
environments and 6 types of gestures.

We first implement models of mentioned prior work in 1-
shot setting (one sample for each gesture to adapt) for target
environment, as shown in Fig 1. Their average test accuracy in
the same environment can achieve 90%. However, whether in
’normal’ or ’low-quality’ settings, there is a obvious decrease
in accuracy across environments. This indicates that even if ad-
vanced adaptive methods are used, they still face performance
degradation issues when deploying across environments. Note
that the data in Widar3.0 are collected in relatively clean
areas, and the environments we select have similar device
deployments. It suggests that the accuracy gap between the
source and target environments might be even larger in real
complicated deployments.
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Opportunity via Multiple Devices. We train a vanilla CNN
(four convolutional layers) model with different numbers of
Wi-Fi links using the DFS profile samples of Widar from the
first environment to classify gestures and test the trained model
on both environments. The results are shown in Table I. We
observe the benefit of adding more Wi-Fi links for sensing
in Table I. Specifically, by using three pairs of devices,
the gesture classification accuracy in the same-environment
setting is increased to 91.67%, much higher than using only
one device pair with an accuracy of 70.00%. Although the
classification accuracy drops by about 30% on average in
cross-environment settings using different numbers of links,
the performance is still better when using more devices. Such
a benefit is worth exploiting because today’s smart homes
usually have many IoT devices connected with Wi-Fi, which
naturally creates the opportunity of using multiple device pairs
for sensing.

Impacts of Low-quality Signals. We further investigate the
impact of low-quality signals on previous adaptive methods
in Fig 1. To establish a basis of comparison with normal
situations, we set up two scenarios: ’Normal’, which represents
the original Widar 3.0 data in the target environment, and
’Low-quality’, which represents the introduction of an artificial
noise sensor to simulate a low-quality signal. The value of this
sensor is sampled from a standard Gaussian distribution, as
discussed in detail in Section V-D. Notably, the performance of
all these methods experienced varying degrees of degradation
under the ’Low-quality’ setting, indicating that the existence
of low-quality signals is overlooked in previous work.

These methods demonstrate promising results in their re-
spective scenarios but fail to adequately address deployment
heterogeneity, low-quality signals and label scarcity. Specif-
ically, these methods require consistent data input formats
in both the source and target domains with the number of
sensors being fixed, and they have relatively static sensor
placement. Furthermore, they assume ideal deployment envi-
ronments free of interference. However, in practical scenarios,
the data obtained may not reflect these assumptions, even
with Widar3.0 multi-sensor deployment solution. Although
meta-learning, representing small sample learning, partially
mitigates the challenge of label scarcity, it struggles to address
significant differences in sensing data between domains and
lacks smooth transitions in different environments. These
results and discussions motivate us to design a better technique
for cross-environment adaptation.

TABLE I: The classification accuracy of the sensing model
trained with different numbers of Wi-Fi links.

Test On One Link Two Links Three Links

Same Env. 70.00% 86.65% 91.67%
Cross Env. 45.95% 50.92% 54.30%

Required Labeling Efforts to Recover Accuracy. We next
analyze the amount of labeled training data necessary for
adapting a pre-trained sensing model to a new environment
using conventional transfer learning. Different numbers of
labeled samples were used to fine-tune the pre-trained model
in the source environment, and the accuracy was tested in

the target environment, as shown in Fig II. Although the
transfer learning technique effectively improved performance,
achieving comparable accuracy in the source environment
requires a large number of labeled samples. For instance,
using three links, over 600 samples are needed to achieve
90% accuracy. Given that labeling a considerable number of
samples is time-consuming, taking a few hours (roughly 10
seconds per sample), it is inappropriate to require the end-
user to undertake such a labelling process.

TABLE II: Required labeling efforts to recover accuracy in
cross-environment sensing adaptation.

Test On 0 200 400 600

One Link 46.33% 63.95% 69.88% 77.13%
Two Links 49.46% 66.71% 79.22% 83.33%

Three Links 54.00% 70.58% 86.56% 90.13%

IV. OUR APPROACH: ADAWIFI

Based on the discussions presented in Section III, we hereby
propose our solution, named ADAWIFI, which utilizes the
DFS information extracted from multiple CSI streams as input
and automatically learns how these streams can collaborate
with each other to adapt to diverse environments. ADAWIFI
comprises three novel designs: deployment-independent col-
lective sensing architecture, progressive tuning with virtual
domains, and contribution-aware sensor reweighting. We first
describe the overview of ADAWIFI and then introduce our
three novel designs in sequence.

A. Overview

The workflow of our approach is shown in Fig 2. We
assume the sensing model is originally trained in one or
more source environments (e.g. the developers’ laboratories),
where the developers have strong motivation and sufficient
time to collect a large dataset of labeled samples. The trained
model is then distributed to different target environments
(e.g. the end-users’ homes) to adapt. Unlike the developers
in the source environments, the end-users are usually less
patient to carefully collect and label the sensing samples.
Therefore, we can only assume there are few labeled samples
(e.g. 1-10 samples per class) in the target environments, which
can probably be obtained by asking the users to do a short
demonstration.

At training stage in source environment, we introduce a
new sensing model technique that is tailored for adaptability,
named collective sensing network architecture, to encode and
aggregate Wi-Fi links flexibly. Afterwards, the pre-trained
model and training data in the source domain are sent to the
target environment for adaptation. At this stage, we imple-
ment progressive model tuning technique through constructing
virtual domain to mitigate the huge data distribution gap
between environments. Meanwhile, contribution-aware sensor
reweighting technique is responsible for analysing sensor qual-
ity to mitigate the negative influence of low-quality sensors.

As for preprocessing of wireless signals, we follow the
standard procedures in prior literature to extract the DFS
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Fig. 2: Workflow of our ADAWIFI.

[37], [41], [54] information from raw Wi-Fi signals. We will
introduce the main components in more detail in the following
subsections.

Fig. 3: The neural network architecture for collective sensing.

B. Deployment-independent Collective Sensing Architecture

Most deep learning model architectures used in Wi-Fi
sensing are not designed for cross-environment scenarios due
to the fixed input format and order. For example, the input of
a typical CNN (Convolutional Neural Network) model should
adhere to a fixed-size shape, where the number of devices and
their order are predefined. A RNN (Recurrent Neural Network)
model processes inputs one token at a time in a sequential
manner, and they can struggle with permutation since they rely
heavily on the specific order in which tokens are presented.
However, in cross-environment settings, we expect the model
to flexibly accept a variable number of signal streams with
arbitrary order.

Therefore, we design a generic neural network architecture
for collective sensing with multiple sensors, as shown in
Fig 3. In the network architecture, the DFS information of
each transmitter-receiver link is first processed by a sensor
encoder module to generate a per-sensor embedding. The
sensor encoder module uses the recurrent neural network [55],

[56] (specifically, the long short-term memory, LSTM) to
convert the time-series sensor data to a fixed-length vector
at each time step. The per-sensor embedding is expected to
represent the activity of the sensing target depicted by each
sensor.

Then the per-sensor embeddings are fed into a knowledge
aggregation module to generate a global embedding vector,
which represents the activity of the target object depicted by all
sensors collectively. We use the Transformer model [57] as the
knowledge aggregator since the self-attention mechanism of
Transformer naturally has the ability to exchange knowledge
between different input tokens, while in our case, each token
of the Transformer is a per-sensor embedding. Compared to
the previously mentioned CNNs and RNNs, the self-attention
mechanism of the Transformer allows the model to process all
sensor embeddings in parallel, rather than sequentially, and
understand the context of each embedding in relation to all
other embeddings, making it robust to permutations. How-
ever, the conventional Transformer architecture is designed
for sequence data (e.g. natural language text), in which the
order of tokens is important. Specifically, it uses positional
encodings to inject information about the position of each
token in the sequence. Instead, the sensors in an environment
are unordered, and the sensing model should be permutation-
invariant, i.e. changing the order of sensors should not change
the model prediction. To achieve this, we exclude the posi-
tional encodings in the Transformer model, so that the input
tokens of the knowledge aggregator only contain the sensing
signal information. Such a permutation-invariant architecture
allows flexibly adding or removing sensors in the collective
sensing system. Such nice properties make it natural to use
the model across different sensing environments.

Finally, the aggregated embedding is fed into a Linear
classifier to produce the final prediction.

More formally, suppose our model is denoted as f , which
produces a prediction y based on the input sensor data x.
The input sensor data x = {x1, x2, ..., xm} is a combination
of the DFS information of multiple transmitter-receiver links.
The shape of x can be described as m×s× t, which represent
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the number of Wi-Fi links, DFS feature size, and the duration
of activity respectively. Our model can be represented as
f = fcls ◦ fagg ◦ fenc, where fenc, fagg , and fcls are the
per-sensor encoder module, the aggregator module, and the
classifier respectively. θ = (θenc, θagg, θcls) is the set of model
parameters for each module. We elaborate on the alterations
in input structure within the system. Following the per-sensor
encoding stage, the data shape undergoes transformation into
an m × h matrix, where h represents the number of hidden
features within the LSTM. Subsequently, the embedded data
is forwarded to the aggregator, where it is reshaped into a
one-dimensional matrix with a dimension of d, denoting the
dimensionality of the feedforward Transformer model. Finally,
this embedding is forwarded to the classifier for the purpose
of classification. For a given sample xi = {x1i , x2i , ..., xmi },
encki = fenc(x

k
i , θenc) is the encoding of the k-th sensor.

aggi = fagg((enc1i , enc
2
i , ..., enc

m
i ), θagg) is the aggregated

embedding. ŷi = fcls(aggi, θcls) is the predicted probablity
of target classes.

Training the sensing model in an environment is the same as
training normal deep learning models, i.e. using gradient de-
scent to find the parameters θ̂ that can minimize the following
classification loss:

Jpred(θ) =
1

n

n∑
i=1

Lcross−entropy(yi, f(θ, xi)) (1)

where Lcross−entropy is the cross entropy loss and yi is the
label for the input xi.

Flexible Distributed Computing for Collective Sensing.
Our proposed architecture for collective sensing allows a
flexible distribution of the computational workload among
different IoT devices. The system consists of multiple client
devices that capture the wireless signals and a master device
(which can be either one of the clients or a separated device)
that performs the sensing prediction. The sensing process
comprises three stages: data preprocessing, which transforms
the raw sensor signals into DFS; encoding, which generates the
embedding for each sensor; and aggregation, which combines
the embeddings to produce a prediction. The first two stages
do not require any coordination among different devices and
can be executed either on each client device or on the master
device. Depending on the computational capabilities of the
devices and the network conditions between them, we can
flexibly determine how to allocate the computational workload
to achieve optimal efficiency. For instance, if there is a
powerful master device and a fast network connection between
the master and clients, we can run all three stages on the master
device; whereas if the client devices are powerful enough, they
can perform most of the processing and encoding tasks locally
to reduce the burden on the master.

C. Progressive Tuning with Virtual Domains

Although the collective sensing architecture solves the prob-
lem of deployment heterogeneity between different environ-
ments, directly transferring the model trained in the source
environment to the target environment is still difficult due to
huge data distribution differences.

Fig. 4: Progressive adaptation by constructing virtual interme-
diate domains.

To fix the large gap between the source environment and
the target environment, we introduce a progressive adaptation
scheme. The method is two-fold, including a data augmen-
tation technique to construct a set of intermediate virtual
domains between the source and target environments, as
illustrated in Fig 4, and training techniques to effectively adapt
the sensing model based on the constructed virtual domains.

Virtual Domain Construction. Since our sensing sys-
tem is based on multiple sensors (i.e. multiple transmitter-
receiver links), it creates the unique opportunity to produce
various intermediate domains by mixing the sensors from
different environments. Specifically, a new virtual domain
can be constructed by including k sensors in the source
environment and l sensors in the target environment, and
each sample {xv, yv} in the virtual domain can be gener-
ated by combining a sample from the source environment
(xs = {x1s, x2s, ..., xks}) and a sample from the target envi-
ronment (xt = {x1t , x2t , ..., xlt}) by concatenating the sensor
readings to xv = {xi1s , xi2s , ..., xims , xj1t , x

j2
t , ..., x

jn
t }, where

1 ≤ m ≤ k, 1 ≤ n ≤ l, and the xs and xt have the
same label (i.e. ys = yt = yv). Therefore, the difficult
task of directly adapting the model between distributionally-
different source and target environments can be converted to
a series of simpler tasks of adapting the model between the
distributionally-similar intermediate domains, which are much
easier to achieve with limited data. Although the generated
samples are not realistic in the physical world, they create
intermediate steps between the source and target domains and
enable smooth transferability between them.

We also incorporate sample-level signal processing tech-
niques to further augment the data in each domain. Based on
the insight that the activity recognition should remain consis-
tent in a small duration of time or with slightly-different move-
ment speed, we propose to generate meaningful sensing signals
from existing signals with time-domain transformations. In
general, we change the positions of the sampling points of
each activity segment to obtain more samples. Specifically, an
activity sample is collected at 1000Hz for about 3 seconds, and
we can get a sequence of sensor signals {xt, xt−d, ..., xt−Nd}
through fixed interval sampling, where t is the end time of
the activity and d is the interval between successive sensor
readings. Since the starting position and interval of sampling
do not directly affect the overall features of the activity, We
can further obtain more samples for the same activity as
{xt′ , xt′−d′ , ..., xt′−Nd′}, where t′ = t+ ∆t and d′ = σd are
slightly and randomly shifted end time and scaled sampling
duration. In this way, the same activity segment can be used to
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Fig. 5: Mitigating the negative influence of low-quality sensors
through sensor contribution estimation.

generate multiple samples which greatly increases the diversity
of data.

Cross-Domain Embedding Alignment. To fully utilize the
virtual domains constructed above in sensing adaptation, we
add an additional loss except for the normal loss described in
Equation 1. Since a key objective of our cross-environment
sensing system is to make the representation of the same
activity consistent across different environments, we further
define a cross-environment embedding alignment loss:

Jconsist(θ) =
1

n

n∑
i=1

x,x′∈E1,E2

Lmse(fagg(fenc(θ, x)), fagg(fenc(θ, x
′)))

(2)
where Lmse is the mean squared error, and x and x′ are

two samples belong to two different environments E1 and E2.
By minimizing the Jconsist loss together with the classi-

fication loss, we can train the model to generate consistent
representations of the target objects across different environ-
ments. Therefore, the knowledge in the source environment
can be transferred to the target environment. The concept
of generating consistent representation between environments
can be found in domain adaptation and domain generalization
approaches, which are typically achieved by finding a domain-
independent representation with unlabeled target-domain data
or without target-domain data (e.g. using adversarial training
or meta-learning techniques). While in our scenario, since we
assume a few labeled target-domain samples are available,
we can directly take a training approach with the domain
consistency loss which can be more sample-efficient.

D. Contribution-aware Sensor Reweighting

Adapting a deep sensing model to new environments also
faces the problem of low-quality sensing signals. Since the
devices and networks may not be perfectly deployed and
configured in the end-users’ homes, the sensing signals of
some devices may be noisy, which increases the difficulty
of model adaptation. To mitigate the negative influence of
low-quality sensors, we adopt a two-stage adaptation scheme,
which reweights the contribution of each sensor before using
the sensors for training in the target domain, as shown in Fig 5.

The use of multiple sensors makes it possible to analyze
the quality of participating sensors. The quality of each sensor
can be estimated based on its contribution to global prediction.
Specifically, we assign a learnable weight for each sensor in
our collective sensing architecture, which is applied to the per-
sensor embedding encki before feeding the embeddings to the

knowledge aggregator fagg . We train the weights by analyzing
how the sensing encoding of each transmitter-receiver link
aligns with other links with the same class label. A lower
weight will reduce the impact of the corresponding sensor on
the aggregated representation aggi and the final prediction yi.
To learn the weights, we fix the other parameters in the sensing
model and minimize the prediction losses Jpred and Jconsist
through backpropagation, which will automatically find an
optimal weight assignment. Each weight would represent the
contribution of each sensor in the collective system, and
low weights would be assigned to the low-quality sensors.
The weights are used during sensing encoding aggregation to
ensure that the low-quality signals have little influence on the
generated global embedding.

After learning the contribution of each sensor, we fix these
weights and train the other parameters for further adaptation
with our progressive tuning technique. It is worth noting that
the fixed sensor weights can also be periodically updated in the
target environment to handle dynamic changing signal qual-
ities. To solve the cross-environment problem, ADAWIFI do
not only adapt the model weights, but also the sensor weight.
Therefore, with the negative influence of low-quality sensors
significantly reduced, ADAWIFI is able to more effectively
adapt to new environments with the limited labeled samples.

E. Overall Training Process

The training process is divided into two primary stages.
In the initial stage, a base model of the ADAWIFI collective
sensing network architecture is trained using data from the
source environment to facilitate subsequent adaptation. During
the second phase, the base model is adapted to the target
environment using ADAWIFI adaptation technology. In par-
ticular, a learnable weight is assigned to each sensor prior to
adaptation. Subsequently, all learnable parameters, except for
the weight parameters, are frozen for several epochs. This step
is conducted to analyze the contribution of each sensor and
ensure that the weights of low-quality signals are reduced. In
the remaining epochs, the learnable weights of the sensors are
frozen, while other parameters (e.g. the LSTM-based sensor
encoder, Transformer-based knowledge aggregator, and linear
classifier) are enabled. During the whole process in the second
stage no matter which parameters are frozen, the progressive
tuning with virtual domains is enabled to achieve smooth
adaptation.

V. EVALUATION

In this section, we evaluate ADAWIFI to understand its
sensing adaptation effectiveness, benefits of multi-sensor col-
laboration, robustness against low-quality sensors, system
overhead, and the contribution of each component.

A. Experiment Setup

Hardware & Software. We used the TP-LINK WDR4310
routers equipped with Atheros AR9344 SoC as the receivers
and transmitters in our experiments. To extract CSI, we use
Atheros CSI tool [58]. The devices communicate at 5GHz. We
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(a) Room 1. (b) Room 2. (c) Room 3.

Fig. 6: The three environments used in our experiments to
collect the sensing data.

built the neural network and learning algorithm of ADAWIFI
with PyTorch and used a desktop with one NVIDIA 3090
GPU to train the model. We used Raspberry Pi to evaluate the
system overhead.

Model Settings. We described the implementation details
of ADAWIFI. The LSTM-based sensor encoder incorporates a
hidden state with 128 features and consists of a single recurrent
layer. In the Transformer-based knowledge aggregator, we
configure 4 attention heads, 1 encoder layer, and a feedforward
network model with a dimensionality of 128. Training and
adaptation procedures are executed over 600 and 200 epochs,
respectively. Notably, parameters other than the learnable
weights of sensors are frozen for a total of 60 epochs. Model
parameter updates are performed using the Adam optimizer
with a learning rate of 0.001.

Datasets. We evaluated our system on two datasets, includ-
ing Widar3.0 [26], a public Wi-Fi sensing dataset with 258,575
samples that were collected in several clean and strictly
controlled environments, and a self-collected dataset that can
better imitate in-the-wild sensing environments. Specifically,
we selected three typical rooms with common furniture and
appliances such as TVs, desktops, sofas, and air conditioners,
as shown in Fig 6. The three pairs of Wi-Fi devices in
each room are placed with the electrical appliances, and the
distances and obstacles between the devices are naturally and
irregularly distributed. Such settings introduce more signal
noise and dynamics due to the multi-path effect, etc., in turn
raise challenges for the Wi-Fi sensing system.

In each room, we asked five volunteers to perform six types
of gestures, including swipe, clap, slide, push & pull, draw
zero, and draw zigzag, similar to the gestures used in the
Widar3.0 dataset. Each volunteer is asked to perform more
than 200 gestures in random order in each room. The gestures
are labeled with a mobile app immediately after each gesture
is completed. In total, we collected 10 hours of data with more
than 9,000 samples.

Baselines. We selected several state-of-the-art model adap-
tation approaches for deep sensing, including EI [28], CADA
[29], MetaSense [33], RFNet [31], and ProtoNet [32]. EI and
CADA adopt adversarial learning to learn a powerful discrim-
inator and feature extractor. Through constantly confusing the
target domain and the source domain, the feature extractor can
obtain domain-independent features. MetaSense, RFNet, and
ProtoNet use meta-learning, a few-shot learning technique that
learns how to adapt to new tasks with limited data based on
sufficient data of multiple known tasks. MetaSense uses an
optimization-based meta-learning method based on the insight

that optimizing the algorithm’s parameters through customized
optimization procedures can be more effective in addressing
the small sample classification problem. In contrast, RFNet
and ProtoNet are metric-based meta-learning methods that
utilize a distance metric to measure the similarity between
the samples in the support and query sets. For those baseline
approaches that are not open-sourced (e.g. EI) or not designed
for wireless sensing (e.g. MetaSense), we reimplemented the
core algorithms of them for Wi-Fi sensing according to their
papers. Although these methods are not designed for multiple
devices to collaborate sensing, we add an aggregation layer to
optimize the observation results of multiple sensors to achieve
fair comparison with ADAWIFI.

B. Adaptation Effectiveness

Self-collected Dataset. We first evaluate the performance
of our method on the self-collected dataset, which closely
aligns with real scenarios. The results are shown in Table III.
Overall, ADAWIFI outperforms the baselines with 20% higher
accuracy on average. We test the performance of all models
under 1, 10, and 20-shot cases in three rooms, where ’1 -shot’
means one labeled sample for each gesture to be collected in
the target environment. Note that this concept differs from few-
shot learning in meta-learning. ADAWIFI can quickly adapt
to new environments even in 1-shot setting with above 70%
accuracy, while most baselines have less than 40% accuracy.
With increasing numbers of samples in the target domain, the
performance of our model is further improved. For example,
the gesture classification accuracy can even achieve as high as
88.50% in Room 2 after adapting with 20-shot samples.

Baseline approaches have lower performance with only
around 40% accuracy in 1-shot setting. Although performance
improves under 20-shot setting, the maximum accuracy is lim-
ited to around 70%. Adversarial-learning-based approaches,
i.e. EI and CADA, show the highest improvement with in-
creased adaptation samples, which can help to learn a domain-
independent feature extractor by confusing the domain dis-
criminator. But limited labeled samples in the target environ-
ment greatly affect their performance. MetaSense, originally
for IMU-based sensing, has the lowest accuracy due to the
instability of the MAML algorithm used in training on both
datasets. Metric-based meta-learning approaches like RFNet
and ProtoNet have slightly better performance, but require
many domains of training data to be effective. The signifi-
cant differences between environments and unbalanced signal
quality worsen the adaptation ability of baseline methods
developed with simple sensing environments.

The reason why ADAWIFI outperforms the baseline meth-
ods is twofold. First, it is hard for most baselines to extract
enough domain-independent features in the target domain
with limited data. Although they have powerful neural net-
work backbones and novel adaptation techniques, the data
distribution between the source and target domains is too
large, and a bridge is needed to connect them. Due to the
design of ADAWIFI, we can obtain numerous intermediate
samples by generating virtual domains even there are only
few shot samples in target domain. Through these intermediate
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TABLE III: Sensing adaptation accuracy of different approaches on our self-collected datasets. Each cell represents the gesture
classification accuracy achieved by the corresponding method in each room. The models are sufficiently trained in other rooms
and adapted in the target room with N shots of samples (N=1,10,20).

Setting Method
MetaSense RFNet ProtoNet EI CADA ADAWIFI

Room1
1 shot 35.33% 40.63% 33.01% 31.07% 33.01% 72.82%
10 shot 40.00% 44.38% 44.82% 50.49% 39.81% 81.55%
20 shot 47.53% 49.38% 58.73% 60.19% 50.49% 84.47%

Room2
1 shot 34.01% 46.88% 37.12% 35.13% 32.74% 72.57%
10 shot 40.00% 50.00% 55.10% 45.13% 50.44% 84.96%
20 shot 42.68% 50.00% 60.73% 55.56% 57.52% 88.50%

Room3
1 shot 38.33% 50.00% 31.70% 43.22% 32.20% 73.73%
10 shot 51.66% 53.13% 55.45% 61.02% 64.41% 80.51%
20 shot 53.35% 62.50% 55.73% 73.73% 72.88% 78.81%

Average
1 shot 35.89% 45.84% 33.94% 36.47% 32.65% 73.04%
10 shot 43.89% 49.17% 51.79% 52.21% 51.55% 82.34%
20 shot 47.91% 53.96% 58.40% 63.16% 60.30% 83.93%

TABLE IV: Sensing adaptation accuracy of different methods
on Widar3.0 datasets. The sensing models are sufficiently
trained in one environment and adapted with few-shot samples
in another environment.

Method Setting
1 shot 10 shot

MetaSense 71.33% 76.26%
RFNet 64.06% 73.44%

ProtoNet 85.12% 90.22%
EI 80.33% 90.00%

CADA 57.67% 88.67%
ADAWIFI 85.00% 91.67%

samples, the model is able to adapt to new environment step
by step, rather than one-step adaptation in baseline models.
We figure step-by-step adaptation will gradually approach the
data distribution of the target domain in the mixed domain
data during the training process, and ultimately transform
to the target domain. Effectiveness of ADAWIFI is more
obviously when target samples are extremely scarce, like 1-
shot setting. Second, the real sensing environment is more
challenging as the sensing devices might be placed in corners
or obstructed by huge obstacles, which seriously change
the propagation path of signals and introduce noise to the
entire system. In addition, interference between signals on the
same channel may cause packet loss due to the complicated
network environment [59]. ADAWIFI take these factors into
consideration and adjust the weights of low-quality sensors
accordingly to avoid interference. In previous work, their
designs only focus on considering changes of room layout
and ignore changes of device placement and introduction
of low-quality signals. However, our proposed technique of
contribution-aware sensor reweighting can handle both above
challenges. Even though there are random devices are unable
to transmit signal normally due to interference, ADAWIFI can
automatically find them and minimize their impact on the
entire system explicitly. For other baselines, only one low-
quality sensor will poisoned the entire system. Therefore, our
system can quickly and efficiently adapt to new environments
with very limited samples.

Widar3.0 Dataset. We also examine whether our system

can achieve better cross-environment adaptation effectiveness
on the public dataset Widar3.0. The results are shown in
Table IV. We can notice that ADAWIFI achieves very high ac-
curacy in both 1-shot and 10-shot settings, 85.00% and 91.67%
respectively. Meanwhile, the baselines including ProtoNet, EI,
and CADA also get good performance as compared with the
results on our self-collected dataset. ADAWIFI seems to be
less competitive than other baseline models because the sens-
ing environments of Widar3.0 are relatively clean and similar.
Specifically, Widar3.0 has a similar relative position between
devices and sensing area in every room, which makes cross-
environmental challenges smaller than our dataset. Meanwhile,
current baselines have considered these simple deployments
and assumed no low-quality sensors, so that all can obtain
decent results. This phenomenon demonstrates the importance
of taking the noisy and heterogeneous characteristics of real
sensing environments into consideration when designing cross-
environment sensing systems.

Cross-dataset. To further investigate the adaptability of
ADAWIFI, a comprehensive cross-dataset scenario is con-
ducted. Specifically, the model is trained with Ada dataset (a
proprietary dataset) and is subsequently tested with Widar3.0
dataset under both 1-shot and 10-shot conditions, and vice
versa. Parallel experiments are also conducted with baseline
models. This particular experiment poses heightened chal-
lenges due to the disparate origins of the datasets, collected
by devices featuring distinct chip architectures (e.g. Widar3.0
dataset gathered via an Intel 5300 wireless NIC and Ada
dataset via a TP-LINK WDR4310 equipped with an Atheros
AR9344 SoC), and within entirely dissimilar environments.
Notably, prior studies only explored cross-environment sce-
narios within the same dataset. As illustrated in Fig 7, the
performance across varied conditions exhibits a notable de-
cline, particularly under the 1-shot setting, where all mod-
els, except for ADAWIFI, achieve only approximately 20%
accuracy. In contrast, ADAWIFI demonstrates accuracies of
30.09% and 26.33% under Widar-to-Ada and Ada-to-Widar3.0
setups, respectively. This discrepancy can be attributed to the
substantial differences in data distributions between the two
datasets. The efficacy of ADAWIFI becomes more pronounced
under the 10-shot setting, where all models exhibit improved
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(a) Accuracy of cross-dataset with 1-shot setting.

MeteSense RF�et Proto�et EI CADA ADAWIFI
0

20

40

60

80

100

A
cc
ur
ac
y 
(%

)

Ada Widar Widar2Ada Ada2Widar

(b) Accuracy of cross-dataset with 10-shot setting.

Fig. 7: The cross-dataset adaptation performance of different
settings of various models.

accuracies. Notably, ADAWIFI outperforms its counterparts by
a margin of at least 25%, showcasing its robust adaptability.
An interesting observation is the generally superior perfor-
mance of the Widar-to-Ada dataset compared to the Ada-
to-Widar dataset. The analysis is that the scale of Widar3.0
dataset is larger and simpler than Ada dataset so that the
base models trained with Widar3.0 dataset can obtain a better
generalization ability. On the flip side, the Ada-to-Widar
setting is more sophisticated which requires a higher adapta-
tion ability and feature extraction capability for models from
limited data. Cross-dataset experiments inspire us with two
perspectives, collecting more samples and considering more
complex scenarios (e.g. different environments and different
Wi-Fi routers), to improve the generalization ability of models.

C. Effectiveness of Multi-Sensor Collaboration

A key advantage of our system is enabling flexible collab-
oration of multiple sensors. In this experiment, we show the
effectiveness of such multi-sensor collaboration by testing our
system with different number of Wi-Fi links.

We randomly select one to three links in the source and
target environments and measure the adaptation accuracy with
the selected links. The results, as shown in Fig 8, reveal that
the gesture classification accuracy increases with the number
of links. However, when there is only one link in the target
environment, the accuracy of the system is poor (below 30%),
even if three links are available in the source environment for
training. This is because the single link may not well depict
the sensing target and generate enough virtual intermediate
domains. Similarly, when there is only one link on the source
domain, the accuracy is still low since the system cannot
learn enough domain-independent knowledge to transfer to the
target environment. When the model has more than two links,

Fig. 8: The cross-environment adaptation accuracy achieved
with different numbers of Wi-Fi links.
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Fig. 9: The accuracy achieved with different individual devices
and their combination.

the accuracy soars to above 80% and eventually achieves 90%
with three links.

This experiment also provides empirical evidence that our
system can allow adding or removing sensing devices flexibly.
In our training and inference processes, the amount and order
of the sensors do not affect the model prediction. This charac-
teristic aligns better with real scenarios where the amount and
order of sensors may be changed at any time due to dynamic
enrollment or disconnection of IoT devices.

D. Robustness against Low-Quality Sensors

In this part, we analyze the influence of low-quality signals
on the sensing systems. We first analyze the contribution of
each Wi-Fi link in our self-collected environment. In Fig 9, we
obtain the adaptation accuracy achieved with each individual
sensor and all three sensors collaboratively for three users.
It shows that the accuracy achieved with Sensor 2 is the
lowest (approximately only 33%) among the three sensors. It
is because it was positioned in the corner of the room farthest
from the target user. Instead, Sensor 1 has the best location
and the strongest sensing signal, which leads to the highest
accuracy (around 70%).

Our approach is able to coordinate multiple sensors for
collaborative sensing, which results in about 10% to 40%
accuracy improvement as compared to using an individual
(high-quality or low-quality) sensor. The improved accuracy of
ADAWIFI is mainly due to the ability to accurately analyze the
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TABLE V: Sensing adaptation accuracy of different methods
on Widar3.0 datasets with a synthetic low-quality sensor.
Random Noise and Packet Loss are two strategies to simulate
the low-quality data.

Method Random Noise Packet Loss
1 shot 10 shot 1 shot 10 shot

MetaSense 50.68% 55.53% 54.00% 62.65%
RFNet 46.89% 62.50% 56.25% 67.19%

ProtoNet 68.73% 79.74% 62.07% 82.96%
EI 70.00% 83.33% 58.33% 71.67%

CADA 54.00% 80.00% 56.67% 70.00%
ADAWIFI 86.67% 86.67% 85.00% 90.00%

quality of different signals and generate a reasonable weight
distribution for them. Meanwhile, we note that under such
conditions, the accuracy of recognition can still be further
improved by using collaborative sensing. In other words,
low-quality signals can still supplement a certain amount of
information to the system.

To further examine the ability of ADAWIFI in tolerat-
ing low-quality signals when implementing cross-environment
adaptation. We add a synthetic noisy Wi-Fi link to the
Widar3.0 dataset to simulate the low-quality signals. Specif-
ically, we adopt two strategies to simulate the low-quality
signals. One is Random Noise, where the signal values of the
added synthetic link are sampled from a standard Gaussian
distribution. It simulates the case that the device is completely
uninformative. Another is Packet Loss, where a random portion
(50%) of the signals in the time domain are masked (i.e. set
to zero) to simulate the case of unstable connection.

We test the performance of different adaptation methods on
the modified dataset, and the results are shown in Table V.
The accuracies of the baseline methods drop significantly as
compared with the values in Table IV. Specifically, all of
them experience 10%-20% accuracy decrease. On the contrary,
the cross-environment adaptation accuracy of ADAWIFI is
not significantly affected. In 1-shot setting, the accuracy of
ADAWIFI remains around 85%, similar to the results on the
original data. While in the 10-shot setting, there is only a 1%-
5% degradation as compared with the clean data, still better
than other models. These results demonstrate the ability of
ADAWIFI to mitigate the influence of low-quality signals.
Meanwhile, it also suggests that the other methods that do
not consider the influence of noise may not be sufficient to
deal with the situations in real homes, where the data quality
may be influenced by the hardware, network, and deployment.

E. System Overhead

We further analyze the overhead of our system. including
the training overhead and the runtime inference overhead.

With three Wi-Fi links, it takes around 830 ms to train our
model for one epoch on NVIDIA 3090 Ti. To adapt the model
between environments, it takes about 1,640 ms for each epoch.
In our experiments, training with 300 epochs and adapting with
120 epochs are enough to achieve a high adaptation accuracy.

We further test the runtime system overhead of ADAWIFI
with the Raspberry Pi. The workload of ADAWIFI mainly

TABLE VI: Runtime overhead of ADAWIFI under different
configurations. Tclient and Tmaster stand for the processing
delay on the client device and the master device in mil-
liseconds, Dtrans represents the amount of data transmitted
between them. We use three clients and one master, they are
all Raspberry Pis. The processing window size is 1 second
and the Wi-Fi packet rate is 1K Hz.

Configuration Tclient Tmaster Dtrans

Preprocess @ Client
375 97 240 KBEncode+Predict @ Master

Preprocess+Encode @ Client
406 13 94 KBPredict @ Master

All @ Master – 2, 348 21 MB

consists of three parts, including data preprocessing, encoding,
and prediction after aggregation. Since our system allows
different parts to be placed on either master or client devices
(as mentioned in Section IV-B), we consider three workload
distribution strategies and evaluate their performance respec-
tively. Specifically, we calculate the delay on both the client
and master devices, as well as the amount of data transmitted
between them on the Raspberry Pi to make a prediction, as
shown in Table VI. According to the results, configuration #2,
i.e. the sensing signals are preprocessed and encoded on the
client device before sending to the master device for aggre-
gation and prediction, provides the lowest total delay, around
419 (406+13) ms, and the smallest data transmission (98 KB).
This is because configuration #2 places the encoding part on
the client device, thereby utilizing each device’s computing
ability and reducing the computational load of the master
device. Furthermore, the data after encoding is reduced in
dimension, enabling rapid aggregation and prediction. Instead,
configuration #3 imposes an excess burden, as the client device
is only responsible for receiving CSI data and sending the raw
data to the master device for extensive centralized processing.

Table VI implies that utilizing a distributed scheme can
reasonably allocate resources and increase computing effi-
ciency. Nevertheless, the optimal configuration depends on
the computation power of devices. For instance, if the master
device is powerful, configuration #1 or #3 may get better.
Due to the design of ADAWIFI, our system can flexibly
deal with dynamic resource scheduling, and the performance
optimization will be further revealed with the increase of
devices.

F. Variation Analysis

We further analyze the performance of different potential
variations of ADAWIFI to understand the contribution of each
component in our design.

Effectiveness of Proposed Adaptation Technologies. Our
primary novel adaptation techniques encompass progressive
tuning with virtual domains and sensor reweighting. To eval-
uate their efficacy within ADAWIFI, we conduct separate
analyses by disabling each method. As depicted in Fig 10a,
the accuracy of both techniques exhibit 8%-20% decrease.
Significantly, the decrease in performance is more conspicuous
for progressive tuning, amounting to a minimum of 15%, in
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(d) Accuracy w/o sample-level
data augmentation.

Fig. 10: The cross-environment adaptation performance of different variations of ADAWIFI.

contrast to sensor reweighting, which registers a minimum of
8%. This disparity can be attributed to the construction of
virtual domains, enabling the generation of additional virtual
samples that facilitate a smoother transition from the source
domain to the target domain. In contrast, the reweighting
process is less impacted due to the inherent capacity of deep
learning models to implicitly discern sensor contributions.
Nonetheless, in the absence of our proposed explicit weight
assignment, a significant performance degradation is observed.
Subsequent experiments involving the removal of both com-
ponents will be discussed in Fig 10c under a fine-tuning case.
Therefore, both two components are indispensable for effective
adaptation.

Comparison of Different Model Backbones. We intro-
duce a tailored model architecture for the collective sensing
problem. In this study, we aim to examine the effectiveness
of this architecture by replacing it with other alternatives.
Specifically, we consider a Convolutional Neural Network
(CNN) backbone and a LSTM-Mean backbone. The CNN
backbone takes the stacked the DFS profile image as the
input and makes prediction with four convolutional layers
and two fully connected layers. The LSTM-Mean backbone
utilizes Long Short-Term Memory (LSTM) to extract features
and aggregate sensor embeddings by computing their mean
value. As shown in Fig 10b, the CNN backbone achieves an
accuracy of only 58% in 20-shot setting, with further decreases
in precision as the number of samples reduced. Although
the LSTM-Mean backbone demonstrates the ability to solve
cross-domain problems to a certain extent, it still lag behind
ADAWIFI by 5% in all N-shot settings. Therefore, ADAWIFI
has the better architecture to deal with sensing adaptation
challenges.

Comparison of Common Adaptation Methods. We fur-
ther analyze the effectiveness of the adaptation method in
ADAWIFI by replacing it with two common transfer learning
methods, fine-tuning and joint-training [60], [61]. Fine-tuning
adjusts the parameters of the pre-trained model using a small
set of labeled samples from the target environment, while
joint-training utilizes the data from both the source and the
target domains to jointly optimize the model which can achieve
better performance in the target domain and avoid forgetting
the knowledge in the source domain. As shown in Fig 10c,
joint-training outperforms fine-tuning slightly. This is due
to the fact that joint-training can better align the samples
from the two domains and thus compensate for the data gap.

However, ADAWIFI still achieves 10-20% higher accuracy
over them. This experiment illustrates the effectiveness of
designing a sensing-specific adaptation method to address
complex adaptation issues.

Effectiveness of Data Augmentation. This experiment in-
vestigates the effectiveness of our proposed data augmentation
technique. Fig 10d shows that there is at least a 10% reduction
in the adaptation accuracy if the model is adapted without
the sample-level data augmentation, which demonstrates the
effectiveness of our proposed data processing technique.

VI. DISCUSSIONS

We discuss several limitations of ADAWIFI and our fu-
ture work. First, receiving CSI data at a high sampling
rate may cause interference in signals on the same channel.
The situation would be even worse for a multi-link sensing
system like ours. Simultaneous communicating and sensing
is an important research direction to push the Wi-Fi sensing
techniques into real deployments. Second, in ADAWIFI, we
mainly use supervised learning to train our sensing model.
The training samples are manually segmented and labeled.
How to effectively leverage the unlabeled raw sensing streams
(e.g. using self-supervised learning) would be an interesting
research question. Third, there usually exist other modalities
of wireless signals in many sensing environments. Due to
the distributed design, it is possible for our system to use
different modalities of signals to achieve more robust sensing
adaptation. We leave it as our future work.

VII. CONCLUSION

In this paper, we have proposed a learning-based Wi-Fi
sensing framework that leverages the collaboration of IoT de-
vices to achieve more effective cross-environment adaptation.
We have designed a model architecture that utilizes comple-
mentary information of distinct devices and an accompanying
model adaptation technique that can transfer the sensing model
to new environments with limited data. Experiments on both
custom and public datasets have demonstrated that ADAWIFI
is able to achieve significantly better adaptation accuracy
than strong baselines. Our techniques would help push Wi-
Fi sensing to more practical smart-home applications.
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