
LlamaTouch: A Faithful and Scalable Testbed for 
Mobile UI Task Automation 

Li Zhang Shihe Wang Xianqing Jia 
State Key Laboratory of Networking State Key Laboratory of Networking State Key Laboratory of Networking 

and Switching Technology, and Switching Technology, and Switching Technology, 
Beijing University of Posts and Beijing University of Posts and Beijing University of Posts and 

Telecommunications Telecommunications Telecommunications 

Zhihan Zheng Yunhe Yan Longxi Gao 
State Key Laboratory of Networking State Key Laboratory of Networking State Key Laboratory of Networking 

and Switching Technology, and Switching Technology, and Switching Technology, 
Beijing University of Posts and Beijing University of Posts and Beijing University of Posts and 

Telecommunications Telecommunications Telecommunications 

Yuanchun Li Mengwei Xu 
Institute for AI Industry Research State Key Laboratory of Networking 

(AIR), Tsinghua University and Switching Technology, 
Beijing University of Posts and 

Telecommunications 

ABSTRACT 
The emergent large language/multimodal models facilitate the evo-
lution of mobile agents, especially in mobile UI task automation. 
However, existing evaluation approaches, which rely on human val-
idation or established datasets to compare agent-predicted actions 
with predefined action sequences, are unscalable and unfaithful. 
To overcome these limitations, this paper presents LlamaTouch, a 
testbed for on-device mobile UI task execution and faithful, scal-
able task evaluation. By observing that the task execution process 
only transfers UI states, LlamaTouch employs a novel evaluation 
approach that only assesses whether an agent traverses all man-
ually annotated, essential application/system states. LlamaTouch 
comprises three key techniques: (1) On-device task execution that en-
ables mobile agents to interact with realistic mobile environments 
for task execution. (2) Fine-grained UI component annotation that 
merges pixel-level screenshots and textual screen hierarchies to 
explicitly identify and precisely annotate essential UI components 
with a rich set of designed annotation primitives. (3) A multi-level 
application state matching algorithm that utilizes exact and fuzzy 
matching to accurately detect critical information in each screen, 
even with unpredictable UI layout/content dynamics. LlamaTouch 
currently incorporates four mobile agents and 496 tasks, encompass-
ing both tasks in the widely-used datasets and our self-constructed 
ones to cover more diverse mobile applications. Evaluation results 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 979-8-4007-0628-8/24/10 
https://doi.org/10.1145/3654777.3676382 

demonstrate LlamaTouch’s high faithfulness of evaluation in real-
world mobile environments and its better scalability than human 
validation. LlamaTouch also enables easy task annotation and in-
tegration of new mobile agents. Code and dataset are publicly 
available at https://github.com/LlamaTouch/LlamaTouch. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI). 

KEYWORDS 
mobile agent, UI task automation, evaluation, testbed 

ACM Reference Format: 
Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi 
Gao, Yuanchun Li, and Mengwei Xu. 2024. LlamaTouch: A Faithful and 
Scalable Testbed for Mobile UI Task Automation. In The 37th Annual ACM 
Symposium on User Interface Software and Technology (UIST ’24), October 
13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https: 
//doi.org/10.1145/3654777.3676382 

1 INTRODUCTION 
Mobile intelligent agents empower users to interact with their 
smartphones using natural languages, alleviating them from te-
dious and cumbersome smartphone operations. These agents are 
particularly beneficial for individuals with visual or hand impair-
ments, or in situations where using a screen is not practical (e.g., 
driving). Notable mobile agents, such as Apple Siri [6] and Google 
Assistant [14], have become indispensable services on smartphones. 
The recent advent of large language models (LLMs) and multimodal 
LLMs has facilitated researchers in building more powerful mo-
bile agents [16, 19, 29, 30]. The key capability of these agents is 
to comprehend user instructions in natural language and execute 
corresponding actions on the mobile interface, as called mobile UI 
task automation, e.g., “forward the last email from Bob to Alice”. 

https://doi.org/10.1145/3654777.3676382
https://github.com/LlamaTouch/LlamaTouch
https://doi.org/10.1145/3654777.3676382
https://doi.org/10.1145/3654777.3676382
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676382&domain=pdf&date_stamp=2024-10-11


UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

Despite claims of powerful task automation capabilities achieved 
by recent LLM-powered mobile agents, their evaluation methods 
are somewhat flawed. Unlike traditional machine learning mod-
els evaluated on well-established static datasets, mobile agents 
need to interact with the dynamic and indeterministic states of a 
smartphone (e.g., network connectivity, dynamic content) as in-
puts. Additionally, mobile devices use touch and gesture-based 
interactions (e.g., swipe, pinch), leading to diverse and ambiguous 
inputs. This variability complicates static action-based matching 
algorithms. Therefore, simply evaluating mobile agents using de-
terministic smartphone states from datasets cannot uncover their 
true capabilities [18, 25, 26]. 

In general, there are two methods to evaluate mobile UI au-
tomation tasks, but neither achieves both high faithfulness and 
scalability. (1) The most intuitive approach is to request humans to 
verify the completion of tasks. However, human evaluation is diffi-
cult to reproduce [9], and the requisite human effort increases with 
the number of agents, tasks, and evaluation platforms. (2) The most 
popular approach used in most prior work [15, 25, 26, 30, 35, 37] is 
exact action match on established datasets, akin to traditional ma-
chine learning evaluations. The key idea is to ask annotators to 
generate a correct sequence of actions that succeed on the task 
as data labels, and then compare agent-generated actions to these 
labels. Although this approach allows for some error tolerance, e.g., 
the variations in click positions on the screen [25], it cannot cover 
all possible and “infinite” paths to complete a UI automation task. 
Consequently, it leads to a significantly higher false negative rate. 
For example, for the task “Reserve a rental car in Los Angeles from 
June 1st-7th, with a budget of up to $60 per day on Expedia”, the 
sequence of three filtering actions can be interchanged. Only tak-
ing one of these execution paths as the reference may incorrectly 
verify a task that is essentially completed. Moreover, LLM-powered 
agents are known to be able to self-correct their wrong actions [23], 
which is critical to enhancing UI task automation capabilities, yet 
is impossible to evaluate in a static dataset. These limitations are 
further demonstrated in §2.2. 

This paper presents LlamaTouch, the first testbed for evaluating 
mobile agents in real-world mobile environments without compro-
mising faithfulness and scalability. The key idea of LlamaTouch is 
to check the task execution trace against a few “essential states” 
identified by the annotators, rather than matching them against pre-
defined action sequences in static traces. For instance, the essential 
states for the task “open app Microsoft Excel (install if not already 
installed), go to login, ...” should include (1) the application “Mi-
crosoft Excel” is opened, and (2) the application is on the login page. 
Other operations, like app installation, are considered non-essential 
and should be ignored. During task execution, LlamaTouch enables 
mobile agents to retrieve only task descriptions from static datasets, 
while device states are directly acquired from realistic mobile de-
vices. Actions produced by mobile agents are directly operated 
on those devices, and all UI interaction data are recorded as task 
execution traces. In the evaluation phase, LlamaTouch compares 
task execution traces with annotated essential states to determine 
whether a task has been completed. 

To ensure faithful and scalable evaluation, LlamaTouch inte-
grates two effective methods. (1) LlamaTouch adopts a fine-grained 
labeling mechanism for essential state annotation at both the screen 

level and single UI component level. It combines pixel-level screen-
shots and textual screen hierarchies to explicitly highlight impor-
tant UI components. With a rich set of annotation primitives pro-
vided by LlamaTouch, it reduces human effort to heuristically iden-
tify and annotate the attributes of essential states for evaluation, 
e.g., the text inside a textbox should be exactly matched. These an-
notated UI states are subsequently used for faithful evaluation. (2) 
During evaluation, LlamaTouch employs a multi-level state match-
ing algorithm that combines fuzzy and exact matches on diverse 
annotated UI states. It uses (i) approximate screen matching, which 
enables LlamaTouch to adapt to dynamic mobile environments and 
varying screen contents, and (ii) mixed UI state matching, which 
detects and matches critical on-screen information. 

Dataset and testbed. We present a large-scale dataset with 
pre-annotated essential states for evaluating mobile UI automation 
tasks in real-world mobile environments. This dataset includes 496 
distinct tasks encompassing a wide array of popular Android appli-
cations. We complement this dataset with an easy-to-use testbed 
that enables mobile agents to interact seamlessly with realistic An-
droid environments. This testbed provides a collection of concise, 
widely used APIs, ensuring compatibility with most mobile agents. 
Mobile agents can be easily integrated into LlamaTouch and use 
our dataset to test their capabilities in mobile UI task automation 
in real-world scenarios. 

Evaluation. We implemented LlamaTouch by utilizing Google 
Android emulator [12] and one Google Pixel 5 smartphone as realis-
tic Android environments. Currently, LlamaTouch has four built-in 
agents, including AutoUI [37], AppAgent [36], AutoDroid [30], and 
CoCo-Agent [21], along with 496 diverse tasks. With human vali-
dation results as the ground truth for task completion, LlamaTouch 
achieves nearly 80% evaluation accuracy in detecting completed 
tasks in real-world environments, while prior action-based evalua-
tion methods fail to do so. We also reveal the limitations of current 
mobile agents in handling tasks practically in real-world environ-
ments. 

Contributions are summarized as follows. 

• We observed the weakness of high false negative rates in 
evaluating mobile UI task automation agents using static 
datasets. To address this, we proposed an evaluation design 
that only compares essential states rather than concrete ac-
tion sequences. 

• We devised a method for annotating essential states using 
a variety of annotation primitives. This approach combines 
visually intuitive screenshots with semantically precise view 
hierarchies to enable fine-grained and accurate UI compo-
nent localization and annotation. 

• We designed a novel task evaluation approach that employs 
both exact and fuzzy matching at various UI state levels. It 
enables faithful evaluation of mobile agents and adapts well 
to dynamic execution environments. 

• We proposed LlamaTouch, the first testbed to faithfully and 
salably evaluate mobile UI task automation agents in real-
world mobile environments. It comprises 496 tasks with 
human-annotated essential states. Four agents integrated in 
LlamaTouch demonstrate its faithfulness and scalability in 
UI automation task evaluation. 



LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

Table 1: The comparison between mobile agent benchmarks. 
LlamaTouch is the first testbed designed for mobile agents driven 
by essential state matching. LlamaTouch also supports fine-grained 
UI-guided essential state annotation with a rich set of primitives 
covering a wide array of matching implementations. 

Benchmark Platform 
Real-world 

Tasks 
Real-env 
Task Exec 

Fine-grained 
UI Annotation 

Essential 
State Match 

Rico [10] 

Mobile 

✓ ✗ ✗ ✗

PixelHelp [18] ✓ ✗ ✗ ✗

AndroidEnv [28] ✗ ✓ ✗ ✗

META-GUI [26] ✓ ✗ ✗ ✗

MoTIF [8] ✓ ✗ ✗ ✗

AITW [25] ✓ ✗ ✗ ✗

Mobile-Env [38] ✓ ✓ ✗ ✗

AndroidArena [34] ✓ ✓ ✗ ✗

WebArena [39] Web ✓ ✓ ✗ ✓

LlamaTouch Mobile ✓ ✓ ✓ ✓

2 BACKGROUND AND MOTIVATION 

2.1 Agents for Mobile UI Task Automation 
Mobile agents have simplified the cumbersome and dull operations 
on smartphones for users. The progression of mobile agents for 
mobile UI task automation can be categorized into three phases. (1) 
API-based agents like Google Assistant [14] and Apple Siri [6] inter-
act with applications through predefined application programming 
interfaces. This approach is reliable while limited in structured and 
predictable tasks. (2) Learning-based agents [18, 25, 26, 37] utilize 
deep learning techniques to learn from previous mobile interaction 
traces, but their capabilities are still confined by their training data. 
(3) Recently, LLMs and multi-modality LLMs have revolutionized 
the capabilities of mobile agents [15, 22, 29, 30]. These models, 
owing to their vast knowledge base, can understand complex, real-
world mobile screens. Mobile agents powered by these models can 
accurately interpret natural language instructions and translate 
them into actionable tasks on smartphone screens. This evolution 
marks a significant leap in the flexibility and adaptability of mobile 
agents. 

Mobile UI task automation agents typically operate with the 
following components. 
Controller is the brain of mobile agents. It interprets task instruc-
tions and UI contexts, and then generates actions to be executed 
on the current UI context. Widely-used controllers include deep 
learning models tailored for specific applications [18, 25, 26, 37], 
LLMs (e.g., GPT-4, Llama) [16, 29, 30], and multi-modality LLMs 
(e.g., GPT-4V) [15, 35, 36]. 
Input: UI Representation. Existing mobile agents take a task 
description and UI representations as the input of their controller. 
There are two basic types of UI representations: screenshot and 
view hierarchy (VH). A screenshot is a visual capture of the current 
screen. A VH provides a textual tree-like structure of the UI ele-
ments present on a screen, including their properties such as type, 
position, and text contents. On top of screenshots and VHs, some 
controllers further extract UI semantics to enhance UI understand-
ing. For example, Yan et al. [35] overlay numeric tags on top of each 
text and icon detected by OCR tools; AXNav [27] converts screen-
shots to bounding boxes and labels, making them comprehensible 
to LLMs. Further processing based on VH, such as converting it to 
simple HTML representations, is also widely utilized [29, 30]. 

Output: Action. The output of controllers consists of actions to be 
executed on the current screen, such as click, swipe, and input text. 
Action parameters can be abstracted at different levels depending on 
the agent’s design and input format. (1) Concrete coordinates on the 
screen [15, 25, 26, 37]: This operates as a direct interaction with the 
screen, similar to human operations. (2) Icon marker [35, 36]: The 
output target will specify a specific icon or graphical element within 
the UI representation. (3) HTML index [16, 29, 30]: By ingesting 
HTML representations, controllers will give a concrete HTML index 
as the action target, which matches specific elements (icons or text) 
on the screen. 

2.2 Mobile UI Task Automation Benchmarks 
As shown in Table 1, a variety of datasets and environments are 
proposed to evaluate mobile agents in UI task automation, but none 
of them achieve both faithfulness and scalability. 

Some work such as Rico [10], PixelHelp [18], and AITW [25], pro-
vides static datasets with task descriptions, UI representations, and 
actions sequences. Mobile agents predict concrete actions on static 
UI representations, which are compared with the ground-truth ac-
tions in the datasets. While this approach is straightforward, it is 

(a) Inaccurate action match in two tasks. Failed reasons: “Left”: wrong 
click parameter; “Right”: wrong input text. 

(b) Different task execution paths lead to the same screen. 

Figure 1: Two major limitations of evaluating mobile UI task 
automation on static datasets. 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

Figure 2: LlamaTouch workflow and code demonstrations for mobile UI task execution and trace evaluation. LlamaTouch enables 
mobile UI task automation agents to integrate easily with AgentEnv for on-device task execution with minimal programming effort. Agent 
execution traces recorded by AgentEnv are used in conjunction with the LlamaTouch dataset in a separate evaluation process. 

insufficient to reveal the performance of mobile agents for two 
reasons. (1) Inaccurate exact action match. Functionally correct ac-
tions may be deemed incorrect due to different action parameters. 
Figure 1a illustrates two cases. First, for click actions, the clickable 
area defined in the dataset may be narrow, whereas in reality, the 
area might encompass the entire UI component (marked with the 
red bounding box). Second, non-identical text inputs can lead to the 
same correct search result (marked with green bounding boxes) in 
most search tasks. This issue has been observed in previous litera-
ture but remains unsolved [25, 35]. (2) Lack of tolerance for different 
execution paths. In real-world environments, a task can usually be 
completed in various paths based on different device/application 
states, as shown in Figure 1b. However, predefined datasets might 
only provide one deterministic path for reference, leading to inac-
curate evaluation. 

There is also other work that enables agent execution in real-
world environments, such as AndroidEnv [28] and Mobile-Env [38]. 
However, they do not inherently support essential state match dur-
ing end-to-end task execution, therefore compromising evaluation 
accuracy. AndroidArena [34] observed the weakness of step-wise 
action match on static datasets: it does not fully tolerate redundant 
actions in task execution paths. They proposed a subsequence-based 
action match, where a task is treated as completed if it contains 
the ground-truth action sequence as its subsequence. We take An-
droidArena as a baseline in §5.3 to compare its evaluation accuracy 
with LlamaTouch. WebArena [39] provides a realistic playground 
for web agents. It uses essential states to evaluate task comple-
tion (e.g., the final result should be or should include some key 
information). LlamaTouch differs from WebArena on the mobile 
platform in both essential state annotation and evaluation process: 
(i) LlamaTouch combines visual screenshots with textual VHs of 
the same screens for fine-grained and precise UI component identi-
fication. (ii) LlamaTouch uses a richer set of primitives to compre-
hensively annotate essential UI states and faithfully evaluate them 
even with high screen content dynamics. 

Human validation is usually used to validate whether a UI au-
tomation task is completed [25, 27]. However, the cost of human 
validation is too high, scaling poorly to multiple tasks, agents, and 
mobile devices. LlamaTouch ensures high scalability as with eval-
uating on static datasets while preserving faithfulness similar to 
human validation. 

3 LLAMATOUCH DESIGN 
Figure 2 shows the workflow of using LlamaTouch for on-device 
task execution and trace evaluation, using the well-constructed 
LlamaTouch dataset. Compared to previous evaluation approaches, 
LlamaTouch exhibits the following benefits. 

• Practical on-device mobile UI task execution (§3.1). Most pre-
vious evaluation methods are simulated on mobile UI interaction 
datasets. LlamaTouch, on the other hand, enables mobile agents to 
operate in realistic mobile environments for UI task automation, 
revealing their true capabilities in real-world scenarios. 

• Fine-grained essential application state annotation (§3.2). By 
observing UI automation task execution transfers states of essential 
UI elements within an application, LlamaTouch enables annotators 
to explicitly annotate essential application states that should be 
detected and matched for task completion. This approach avoids 
the previous static evaluation methods’ focus on the determinism 
of traces, reducing the probability of false negatives in evaluation. 

• Faithful and scalable task evaluation (§3.3). LlamaTouch eval-
uates the performance of mobile agents by comparing their task 
execution traces captured in real-world mobile environments with 
annotated essential states. By combining exact and fuzzy matching 
algorithms on different application states, LlamaTouch achieves 
faithful task evaluation without losing scalability. 

3.1 On-device Mobile UI Task Execution 
Evaluating mobile agents on predefined, deterministic traces, as 
discussed in Section 2.2, depicts significant inaccuracy. LlamaTouch 
empowers on-device mobile UI task execution to reveal the real 
capabilities of mobile agents. To simplify this process, we propose 
AgentEnv, a bridge between existing mobile agents and realistic 
mobile environments (e.g., smartphones, Android emulators, and 
cloud device farms). With AgentEnv, mobile agents execute tasks 
on real-world mobile environments by following the processes 
shown in Figure 3. 1 ○Mobile agents request a task instruction from 
AgentEnv. The instruction comes from the LlamaTouch dataset. 2 ○
With the task instruction, mobile agents request UI representations 
(e.g., screenshot, VH) from AgentEnv, which are then 3 ○ forwarded 
to mobile devices. 4 ○ Taking the task instruction and UI representa-
tions as inputs, mobile agents predict an action to be performed on 
the current UI and dispatch the predicted action to AgentEnv. 5 ○



LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

Table 2: A set of primitives used in essential state annotation and trace evaluation. 
Match Type State Type Primitive Keyword Use Case 

Fuzzy match 

UI state 

Screen info fuzzy<-1> Verify if the contents on two screens are approximately identical. 

Textbox fuzzy<n> 
Verify if the content of the target textbox is semantically similar 
to the content of the original textbox<n> in the ground-truth UI. 

Exact match 

Activity activity 
A coarse-grained approach to determine whether two UIs represent 
the same functional screen in an application. 

UI component exact<n>, 
exclude<n> 

Verify if the UI component is exactly identical to the UI component<n>, 
or if it does not occur, in the ground-truth UI. 

System state (Un)installation 
installed<app>, 
uninstalled<app> 

Verify if the target application named "app" has been successfully 
installed or uninstalled. 

Action Action 
click<n>, 

type<input_text> 
Verify if two actions and their parameters are identical. 

Figure 3: Interaction between mobile agents, AgentEnv, and 
real-world mobile environment in the on-device mobile UI 
task execution process. 

AgentEnv forwards and executes the agent-predicted action to mo-
bile environments. The processes from 2 ○ to 5 ○ are repeated until 
mobile agents consider the task completed. During task execution, 
all UI representations and corresponding actions are captured as 
task execution traces for further evaluation in §3.3. These UI rep-
resentations include (1) pixel-level screenshots; (2) textual screen 
VHs; (3) activity names of the application in the foreground of each 
screen; and (4) actions performed on each screen. Essential system 
states, such as the list of installed applications, will also be recorded 
for faithful mobile agent evaluation. The left-hand side of Figure 2 
demonstrates the code implementation of the interaction between 
mobile agents and AgentEnv. Appendix A.1 presents details of the 
APIs provided by LlamaTouch for mobile agent integration. 

3.2 Essential Application State Annotation 
Two major cases demonstrated in §2.2 highlight why exact action 
match on predefined action sequences is unfaithful. First, it demands 
that the agent-generated actions and their parameters match exactly 
with those in the dataset. Second, it takes a fixed UI interaction 
sequence provided by the dataset as the reference, making it unable 
to evaluate alternative task execution paths. 

Insight: The task execution process transfers identifiable 
application states. During the execution of a UI automation task, 
the application states change, and some of these states can be ex-
plicitly represented by UI components. Even if the task execution 
paths differ, there are overlaps in the essential application states. 
We can utilize these overlapping application states to determine 
whether a task achieves some milestones or is completed. As the 
example shown in Figure 1b, by identifying the intent of the task 
“open app Microsoft Excel (install if not already installed), go to 
login, ...”, it contains two potential essential states for evaluation: (1) 

the application “Microsoft Excel” is opened; and (2) the application 
is located at the login page. Other actions, like detecting whether 
the application is installed, can be omitted during evaluation. 

To achieve this, essential states should be accurately identified 
and annotated. However, simply annotating application states at the 
whole UI representation level (e.g., an entire screenshot) and com-
paring screen-level similarity [11] is too coarse-grained and may 
lead to inaccurate matching. For example, the screen contents of a 
web-shopping application could be subtly different due to nonde-
terministic swiping gestures or dynamically loaded contents across 
different executions. For accurate and efficient essential state anno-
tation, LlamaTouch breaks the whole pixel-level UI representation 
into separate UI components. This is achieved by simplifying the 
textual VH of each screen, which precisely expresses the attributes 
of every UI element, to extract important, visible UI components. 
These extracted UI components are combined with visually intu-
itive screenshots to provide precise overlayed bounding boxes and 
unique identifiers to annotators. Figure 4 shows an example of 
VH-enhanced screenshots in a task provided to annotators. 

Annotation primitives. LlamaTouch incorporates a list of prim-
itives for essential state annotation. These primitives represent es-
sential information on the screen and indicate how this information 
should be matched. Annotators are responsible for clearly identi-
fying and using primitives to represent application states that are 
informative and deterministic for validating task execution results. 
Table 2 comprehensively shows these primitives and their use cases. 
Currently, LlamaTouch incorporates six types of primitives and 
nine keywords for annotation. These primitives can be divided into 
three types according to the application state type they represent. 

• UI state. The purpose of UI state annotation is to extract and 
compare whether two screens contain identical or similar infor-
mation. As a screen may contain different types of components, 
LlamaTouch uses four major primitives to cover the comparison 
logic of all these UI components. (1) Screen info and (2) textbox are 
used to compare whether the whole screen or a dedicated textbox 
has similar contents. Screen info is primarily used for checking 
whether two UI representations are within the same screen (i.e., the 
same page of an application). Textbox primitive is used to annotate 
textboxes that may contain dynamic contents, such as a search 
box in a web-shopping application or the URL of a website. (3) 
The functionality of activity is like screen info: it can be used to 
approximately detect whether two UI representations are on the 
same screen of an application. (4) UI component is used to determin-
istically annotate the state of a UI component, including textbox, 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

Figure 4: Annotated essential states for the task “empty the shopping cart on bestbuy” in the last UI representation: two 
textboxes with the exact keyword. The essential states represent the application state after task execution: “the shopping cart 
on bestbuy is empty”. 

button, image, etc. For example, if the content of a textbox should 
be matched, this textbox should be annotated with the exact key-
word. States that require certain UI components not to occur on 
the screen can be annotated with the exclude keyword. 

• System state. System state annotation in LlamaTouch is primar-
ily inspired by tasks from the previously built dataset: AITW [25]. 
For example, a task like “install app YouTube Kids” can be detected 
directly using shell commands to access system states (e.g., pm 
list packages), without involving complex UI states. Currently, 
LlamaTouch supports programmatically checking application in-
stallation status. The keywords can be easily extended and cus-
tomized to detect other system or application states. 

• Action. Although the principle of annotation is to detect appli-
cation state transfer during task execution. Sometimes, action on a 
specific UI representation is necessary to validate agent behavior, 
especially when there are not enough state identifiers shown in the 
UI. LlamaTouch provides click and type keywords that cover the 
most common actions. 

Case study. Essential state annotation can be divided into the 
following processes. First, for each UI representation, LlamaTouch 
overlays all functional UI components with numeric markers on 
the screenshot as shown in Figure 4. This is done by extracting the 
precise metadata of each UI component from textual VH. Annota-
tors will then identify the essential states that should be checked 
during evaluation to ensure the task is completed. LlamaTouch 
simplifies this process by only requiring annotators to explicitly 
identify what UI element should be matched and what annotation 
primitive should be used. For example, after emptying the shopping 
cart on bestbuy, the screen will display a textbox with the content 
“Your cart is empty”. This textbox should be treated as an essential 
state, which is highlighted in a bounding box with numeric ID 13 
in the last screen of Figure 4, as it represents the state after task 
completion. As we anticipate the content of the textbox should 
be exactly matched, the annotated keyword is exact<13>. The key-
word exact<27> is used to validate whether two screens are both 
in the shopping cart of bestbuy. All annotations, along with the UI 

representations and task descriptions, construct the essential state-
powered dataset. These essential states are used by LlamaTouch 
for faithful task evaluation. 

3.3 Faithful and Scalable Task Evaluation 
Annotated essential states (§3.2) and captured task execution traces 
(§3.1) are jointly used for evaluation in LlamaTouch. LlamaTouch 
iterates through essential states to determine whether a task ex-
ecution trace sequentially matches all annotated states. If so, the 
task is deemed completed. To achieve faithful evaluation, the most 
significant challenge lies in how to ensure the task execution trace 
matches the essential states. Task execution traces captured from 
real-world mobile environments may contain dynamic screen con-
tent; it is vital to adapt the annotated essential states from a static 
dataset to varying screens captured from the real world, while 
achieving precise matches on only critical information. To address 
this problem, LlamaTouch employs a multi-level state matching 
algorithm, which combines fuzzy match and exact match on both 
the entire screen and separated UI components to ensure faithful 
evaluation. The algorithm first approximately matches two screens 
according to their UI representations and activities. Then, within 
two matched screens, it compares each annotated essential state 
with iterated UI components in the target screen based on their 
annotated primitives. A task is considered completed only when all 
annotated essential states have matching counterparts. The match-
ing philosophy of all annotation primitives is as follows. 

Approximate screen match is used to ensure two screens 
are on the same functionality page of an application, even under 
high screen content dynamics. This is the preliminary process for 
in-screen exact/fuzzy content match. To achieve this, LlamaTouch 
utilizes two annotation primitives proposed in §3.2: activity and 
screen info. 

1. Application activity match. Activity represents an entry point 
for users to interact with the application [3]. This is a clear identifier 
to indicate whether two screens are in the same application. Screens 
with distinct functionalities typically have unique activity names, 



LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

Figure 5: Workflow for constructing the LlamaTouch dataset. Generally, the workflow has three independent processes. (1) Generate 
task descriptions by sampling from previous datasets or constructing new ones through humans or LLMs. (2) Record UI interaction traces 
according to task descriptions. (3) Annotate essential states atop UI interaction traces. 

even if they are within the same application. For example, the ac-
tivity of the main settings page is “com.android.settings.Settings”, 
while the Wi-Fi settings page has the activity “com.wifiadmin.settings. 
WifiSettingsActivity”. Typically, exact application activity match 
acts as a foundational filtering process to identify whether two 
screens are on the same page. However, some specific application 
design philosophies may cause different functional pages of an 
application to contain the same activity name [2]. Under these cir-
cumstances, LlamaTouch involves screen info for accurate screen 
match. 

2. Fuzzy screen info match is utilized when the activity name 
cannot differentiate between functional pages of an application. To 
better compare two screens, it is crucial to extract only the critical 
information from the screen. In summary, LlamaTouch simplifies 
the textual screen VH to a simple HTML representation, as in prior 
work [29, 30], while preserving the types of every UI component. 
LlamaTouch compares two simplified HTML representations of the 
screens using the cosine similarity of their sentence embeddings. 
Two screens are deemed similar when their cosine similarity ex-
ceeds a predefined threshold, e.g., 0.85 in our experiments. The fuzzy 
screen info match design helps LlamaTouch maintain faithfulness 
during evaluation when dealing with dynamic screen contents. 

Mixed UI state match will be applied to matched screens after 
the approximate screen match process. A mix of annotated UI states 
will be checked in this phase, including both fuzzy match and exact 
match on UI components, actions, and system states. 

1. Exact UI component match requires that an annotated UI com-
ponent be identical in two screens being compared, including all 

their attributes such as class, text, and selected in VH. This is espe-
cially useful for evaluating the content of a textbox, the status of 
a button (e.g., checked or not), or a selectable icon on the screen. 
Given a target UI component to be exactly matched, LlamaTouch 
will iterate through nodes in the VH of the matched screen until a 
matching UI component is found. Exact UI component match fails 
if no matching node is found on available screens. In our dataset, 
exact UI component match accounts for 51% (698 out of 1,379) of 
annotated essential states. 

2. Fuzzy textbox match is crucial for comparing the content in-
side a textbox on the screen, especially when the content may be 
slightly different. Semantically similar search keywords with the 
same intent that comply with a specific task description should be 
matched, as they will lead to the same results. For example, Fig-
ure 1b shows searching for “Microsoft Excel” and “Excel” in the 
Google Play Store both display the target application. LlamaTouch 
extracts the content of the annotated textbox and then compares 
the text with nodes in the matched screen using the same approach 
as in fuzzy screen info match. 

3. Action match. Although the initiative of LlamaTouch is to de-
tect state transfer during task execution, there are still cases for eval-
uating concrete actions performed on the screen, such as clicking a 
specific UI component or typing the correct captcha. LlamaTouch 
directly compares the actions and their parameters of the annotated 
actions with their counterparts on the matched screens. Different 
from prior studies [25], LlamaTouch uses XPath [1] of target UI 
components extracted from screen VHs as parameters for click 
actions. This approach provides more tolerance in the action space 
compared to using precise coordinates. 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

4. System state match is usually more efficient and accurate than 
merely comparing UI states for specific tasks that involve determin-
istic system states, e.g., installed applications. LlamaTouch currently 
supports checking whether an application is installed or not. Such 
system states are recorded during task execution on real-world 
mobile devices (§3.1). LlamaTouch will check whether the anno-
tated system state is identical to that of the last screen in the task 
execution trace, which is also recorded by AgentEnv. 

Through the multi-level state matching algorithm, LlamaTouch 
achieves high evaluation accuracy on real-world task execution 
traces, while preserving the scalability of evaluating on static datasets. 
The above evaluation logic is well encapsulated into the LlamaTouch 
evaluator. To use it for evaluation, an agent only needs to define 
how to load the task execution traces for each task, as shown in 
the right side of Figure 2, The evaluator will automatically conduct 
the evaluation and report metrics such as task completion rate. 
Experiments in §5 show the faithful evaluation of LlamaTouch. 

4 LLAMATOUCH DATASET 

4.1 Dataset Construction 
The LlamaTouch dataset consists of a combination of tasks from 

the previous AITW dataset [25] and self-generated tasks that in-
volve diverse categories and popular applications. The inclusion of 
new tasks in currently popular applications, which have not been 
covered in previous literature, aims to properly assess the gener-
ality and real capabilities of mobile agents. Figure 5 demonstrates 
the workflow for constructing the dataset, where each data sample 
undergoes the following processes. 
Generate task descriptions. Task descriptions are generated by 
both humans and LLMs using app metadata (e.g., app names, cate-
gories, descriptions) from popular apps in the Google Play Store. 
For tasks in the AITW dataset, we sample parts of them after dedu-
plicating similar task descriptions. The sampled task descriptions 
are then validated by humans to avoid duplication, infeasibility, and 
high complexities that may far exceed the capabilities of human 
and mobile agents. After this process, we sampled 102 tasks from 
the AITW dataset among 26 unique apps and 394 newly generated 
tasks among 46 unique apps. The generated descriptions cover a 
variety of application categories such as utilities (e.g., Zoom, Ex-
pedia), social media (e.g., Discord, Instagram), and web shopping 
(e.g., Walmart, Amazon). The left-hand side of Figure 5 shows the 
proportion of these categories. 

We then employ six human annotators, all of whom are authors 
of this study and experts in smartphone usage, to generate data 
samples in LlamaTouch through the following two independent 
annotation stages. The image on the lower side of Figure 5 illustrates 
the outputs of the human annotation process. 
Record UI interaction traces. The validated task descriptions are 
used as guidance for recording UI interaction traces. Tasks sampled 
from the AITW dataset are also required to go through this process 
as they lack view hierarchies. Given a task description, human 
annotators interact with mobile apps through our developed UI 
Interaction Recorder. This tool is built on top of mobile emulators 
or realistic smartphones and displays the graphical user interface 
to users, allowing them to operate it like normal smartphones. 
Specifically, human annotators are asked to complete a task in the 

simplest manner and to avoid redundant operations, as in [25]. As 
shown in Figure 5, the task “Empty the shopping cart on bestbuy” 
requires five continuous click actions to complete. The recorder 
captures actions, VHs, activities, and screenshots, which collectively 
form the UI trajectory. 
Annotate essential states. The recorded UI interaction traces, 
along with task descriptions, are then processed by human anno-
tators to identify essential states. To help annotators better under-
stand the application state transformation and simplify the anno-
tation process, we developed an essential state annotation system. 
This system displays the entire UI interaction trace, with poten-
tially significant UI components shown with numeric indices in 
each screenshot. Annotators are asked to identify the most signifi-
cant, identifiable states that represent key milestones during task 
completion. They annotate these states (their numeric indices) with 
the proper essential state primitives we proposed in §3.2. These 
essential states, together with recorded UI interaction traces, form 
the final LlamaTouch dataset. 

During the annotation process, to ensure data reliability, any-
thing that a single human annotator cannot decide on is annotated 
based on a consensus reached by three or more annotators. Over-
all, this dataset includes 496 tasks, covering 57 unique Android 
applications with diverse task complexities. 
4.2 Dataset Statistics 

In this section, we present statistics of the LlamaTouch dataset. 
Table 3 quantifies task complexities by showing the average steps 
(actions) required to complete a task. Tasks from AITW [25] are 
slightly more complex than those generated by LlamaTouch, with 
average steps of 7.35 versus 5.67, respectively. Overall, the average 
number of steps to complete a task is nearly 7, with task complexi-
ties ranging from 2 to 42 steps. 

Table 3: LlamaTouch dataset statistics and task complexities 
measured by the average steps (actions) to complete a task. 

Category # Task # Apps Avg. Steps 
AITW [25] 102 26 7.35 (2-19) 
Generated 394 46 5.67 (3-42) 

Total 496 57 7.01 (2-42) 

We further analyze action types in the ground-truth dataset. 
Table 4 shows the statistics of actions contributing to the dataset. 
In summary, all 496 tasks involve click actions. Out of these, 292 
tasks involve swipe actions, and 147 tasks involve input actions. A 
few tasks also use press home and back for navigation. By dividing 
the total number of actions by the number of tasks involving these 
actions, we observe an average of more than 4 click actions per data 
sample. The average number of all other actions is less than 2. 

Statistics in Table 5 detail the annotated essential states. We find 
that the essential states of 441 tasks can be presented on only one UI 
representation, indicating that most tasks check only the final states 
after task completion. There are 53 tasks and 2 tasks with essential 
states presented on two and three UI representations, respectively. 
Among the annotated essential states, exact UI component match 
accounts for 51% of all essential states, followed by exact activity 
match at 36%. More than 84% of tasks (418 out of 496) have at 



LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

Table 4: Action statistics in LlamaTouch dataset. 

Action # Action # Tasks W/ Action Mean/Stddev 
Click 2,192 496 4.42/2.51 
Swipe 376 292 1.29/0.9 

Input Text 173 147 1.18/0.55 
Press Home 44 43 1.02/0.15 
Press Back 6 5 1.2/0.45 

Table 5: Statistics of annotated essential states. 

Type Essential State (ES) # ES # Tasks W/ ES Mean/Stddev 

Exact 
Match 

UI Component 698 418 1.67/0.92 
Activity 490 442 1.11/0.32 

Action: Click 98 93 1.05/0.23 
Action: Type 1 1 1/0 
System: Install 7 7 1/0 

System: Uninstall 3 3 1/0 
Fuzzy 
Match 

UI Component 51 44 1.16/0.43 
Screen Info 31 31 1/0 

least one of these two types of essential states. Fuzzy match is 
also important for the evaluation process: 44 tasks have 51 fuzzy 
UI component match in total; fuzzy screen info match occur in 31 
tasks. In summary, all types of essential states construct the dataset, 
which significantly contributes to the faithful evaluation of mobile 
UI task automation, as we will show in the following section. 

5 EVALUATION 

5.1 Experiment Setup 
Mobile environments. LlamaTouch primarily utilizes an x86-64 
Android emulator [12] as the mobile environment for task execu-
tion. The Android emulator is configured with Android 12 (API 
level 31) with Google Play Services deploying on a Linux server 
running Ubuntu 18.04 OS. Tasks involving applications that are not 
compatible with the Android emulator (e.g., Snapchat) are tested 
on a real Google Pixel 5 device with Android 14 OS. 
Task setup. In this study, tasks are set up in two stages. First, 
we construct an Android system image for the Android emulator, 
which provides a concrete environment where partial task states 
are prepared. This ensures a controlled and replicable starting point 
for the tasks. Second, we develop setup scripts using the Android 
UIAutomator2 library [4] to manage complex setup processes with 
specific constraints (e.g., require manual login or run on real-world 
smartphones). These scripts automate the initialization of the en-
vironment, ensuring tasks are ready for execution with minimal 
manual intervention. 
Mobile agents. We selected four mobile agents that cover diverse 
types of brains, including supervised learning models, LLM, and 
large multi-modality models. 

• Auto-UI [37] employs a multimodal transformer model based 
on BLIP-2 [17] and T5 [24] variants as the brain for decision-
making. It takes pixel-level screenshots and task descriptions 
as input. 

• AutoDroid [30] uses LLMs for device control. It first takes 
textual screen VH and simplifies it to an explicit, readable 
HTML representation. The simplified HTML representation 

is then processed by LLMs to generate the corresponding 
action. We selected GPT-4 (gpt-4-0125-preview) [5] as the 
backend of AutoDroid. 

• AppAgent [36] utilizes GPT-4V [22] to comprehend the screen-
shots of mobile devices and then dispatch controlling com-
mands to LlamaTouch. In our evaluation, we used the AppA-
gent version without document pre-exploration for simplic-
ity. 

• CoCo-Agent [21] uses LLaVA [20] as the brain. It is trained 
on a subset of the original AITW dataset. 

Evaluation methodologies. We used the following methodologies 
for evaluating whether an agent completes a task. 

• Step-wise action match is widely-utilized in evaluating mobile 
agents on well-established datasets [25, 26, 30, 37]. It com-
pares the agent-generated action sequences in real-world 
environments with ground-truth action sequences in the 
dataset. When two action sequences are identical, the task is 
treated as completed. We utilize the action match algorithm 
in AITW [25]: two actions are matched only if they have 
identical action types and parameters. 

• Longest common subsequence (LCS)-based action match is pro-
posed in AndroidArena [34]. It is built upon step-wise action 
match by tolerating redundant actions between ground-truth 
ones. Two action sequences are matched when the execution 
action sequence contains the ground-truth sequence as the 
subsequence. 

• LlamaTouch that compares agent execution traces with our 
annotated essential states to check whether a task is com-
pleted. 

• Human validates whether a task is completed based on the 
agent execution traces. Humans are instructed not only to 
focus on the action (and its parameter) on each UI represen-
tation, but also the whole application state transfer during 
task execution. The results of human validation are treated 
as ground truth for comparing the accuracy of the three 
evaluation approaches. 

5.2 Metrics 
We primarily compare (1) the end-to-end task completion rate 

(TCR) of different mobile agents and (2) the accuracy of differ-
ent evaluation approaches, using human validation results as the 
ground truth. 
End-to-end TCR. Executing tasks in realistic mobile environments 
results in two outcomes: task completion and task non-completion. 
In step-wise action match, a task is considered completed only when 
the two action sequences are identical. LCS-based action match 
assesses whether a ground-truth action sequence is a subsequence 
of the agent-generated action sequence; if so, the task is evaluated 
as completed. In LlamaTouch, a task is considered completed when 
the agent execution trace passes through all essential states in the 
ground-truth dataset, using the proposed algorithm in §3.3. The 
end-to-end TCR of a certain evaluation method is calculated as the 
number of tasks evaluated completed divided by the total number 
of tasks in the dataset. 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

Evaluation accuracy. In this study, we use human validation re-
sults on agent execution traces as the ground truth for task comple-
tion. Assume 𝑁 denotes the ground-truth dataset encompassing all 
tasks. For task 𝑛 in 𝑁 , we use 𝐻𝑛 to represent the human validation 
result based on the agent execution trace, where 𝐻𝑛 can be either 
“True” or “False”. When evaluating the same agent execution trace 
using a specific evaluation method, the outcome is represented by 
𝐸𝑛 , which can also be “True” or “False”. Therefore, the accuracy 
formula is defined as: 

accuracy = 

 
𝑛∈𝑁 

 
𝛿𝐸𝑛,𝐻𝑛 

 
|𝑁 | (1) 

The formulation indicates that a task is accurately evaluated only 
when the evaluation result 𝐸𝑛 matches the human validation result 
𝐻𝑛 . Consequently, the accuracy of an evaluation approach is defined 
as the proportion of correctly evaluated tasks to the total number 
of tasks in the dataset |𝑁 |. 
5.3 Task Completion Rate and Accuracy 
Table 6 presents the end-to-end TCR and accuracy of different 
evaluation designs. All three approaches achieve more than 90% 
accuracy on average. However, the step-wise action match and LCS-
based action match fall short in recognizing tasks correctly executed 
by mobile agents, resulting in nearly 0% TCR. The high accuracy 
rates of these two approaches are attributed to the large portion 
of incomplete tasks; only 6% of tasks are deemed completed upon 
human validation. Compared to action match on static datasets, the 
TCR evaluated by LlamaTouch is 8.67%, which closely aligns with 
the results of human validation. 

To demonstrate LlamaTouch’s effectiveness in addressing the 
issue of false negative results pervasive in previous evaluation 
methods, we focused on tasks considered successfully completed 
by human evaluation, excluding all incomplete tasks. Table 7 dis-
plays the number of tasks completed by agents and the evaluation 
accuracy for these tasks. Overall, agents successfully completed 30 
tasks on average. Among these tasks, both step-wise action match 
and LCS-based action match achieve no more than 0.1% evaluation 
accuracy. This indicates they are unable to faithfully evaluate tasks 
executed in real-world environments using static datasets, primar-
ily because a single static action sequence is difficult to match with 
multiple possible paths to task completion in real-world environ-
ments. Notably, LlamaTouch exhibits an average accuracy of 79% 
in validating these task execution traces, significantly reducing 
the percentage of false negative cases observed with other evalua-
tion methods. The findings uncover LlamaTouch’s proficiency in 
evaluating UI automation tasks under real-world settings. 

5.4 Ablation Study 
LlamaTouch achieves high accuracy when evaluating agent execu-
tion traces in real-world environments, attributed to the annotation 
and implementation of various essential state primitives. In this 
section, we evaluate the effectiveness of two types of match designs 
in LlamaTouch: fuzzy match and exact match. We aggregate the exe-
cution traces of all mobile agents evaluated in §5.3. We evaluate the 
system by first disabling exact match and fuzzy match separately, 
and then enabling different primitives one at a time. We present the 
results for (1) all tasks, (2) tasks in AITW [25], and (3) new tasks 

Table 6: End-to-end task completion rate (TCR %) and accu-
racy (Acc. %) of different evaluation approaches of all tasks. 

Mobile 
Agent 

Step-wise 
action match 

LCS action 
match 

LlamaTouch Human 

TCR Acc. TCR Acc. TCR Acc. TCR 
AutoUI 0.00 98.18 0.00 98.18 4.44 96.57 1.82 

AutoDroid 0.00 85.98 0.00 85.98 14.84 91.87 14.02 
AppAgent 0.00 93.33 0.61 93.13 10.91 94.95 6.67 
CoCo-Agent 0.00 97.97 0.00 97.97 4.47 96.34 2.03 
Average 0.00 93.86 0.15 93.81 8.67 94.93 6.14 

Table 7: Accuracy (Acc. %) of different evaluation approaches 
among all successful tasks in human validation. 

Mobile 
Agent 

Step-wise 
action match 

LCS action 
match 

LlamaTouch Human 

Acc. Acc. Acc. # success 
AutoUI 0.00 0.00 77.78 9 

AutoDroid 0.00 0.00 73.91 69 
AppAgent 0.00 3.03 93.94 33 
CoCo-Agent 0.00 0.00 70.00 10 
Average 0.00 0.76 78.91 30 

generated in LlamaTouch. The results for task completion rate and 
accuracy are shown in Table 8. 

Exact match ensures key information on two screens is identi-
cal. As shown in the results, exact match significantly contributes 
to improving evaluation accuracy. For example, without all exact 
match primitives, LlamaTouch’s evaluation accuracy on all tasks 
drops from 95% to 19%. Among all exact match primitives, activity 
match greatly improves evaluation accuracy. This is due to its sim-
ple yet efficient ability to locate functional application screens and 
the large proportion of annotated activity primitives, comprising 
35% of all primitives in our dataset. UI component match is also 
necessary for faithful evaluation in LlamaTouch, as it is typically 
with screen location primitives such as activity to detect critical 
information within the matched screen. Exact match for action and 
system state only improves accuracy slightly because only a few 
tasks are annotated with these primitives. 

Fuzzy match does not show a notable improvement in evalua-
tion accuracy, despite the presence of 30 screen-level fuzzy match 
primitives and 52 textbox fuzzy match primitives in the dataset. Few 
tasks with these primitives can be completed by the four agents we 
evaluated, leading to only a slight improvement. Although primi-
tives for fuzzy match are not well explored, they play an important 
role in dealing with screen content or UI layout dynamics in the 
real world. With more performant mobile agents in the future, they 
will be further explored and evaluated. 

5.5 Absolute Capabilities of Mobile Agents 
In this section, we present the absolute capabilities of different 
mobile agents in mobile UI automation tasks. First, we categorize 
tasks according to their sources: AITW and our self-generated 
dataset. This aims to determine whether an agent that has pre-
viously learned on a well-established dataset can adapt to new 



LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

Table 8: Ablation study on different essential state primitives. 

Evaluation design 
All tasks AITW Generated 

TCR Acc. TCR Acc. TCR Acc. 
Complete LlamaTouch 8.67 94.93 17.46 89.43 6.38 96.36 
LlamaTouch W/O exact match 86.77 18.85 82.55 29.75 87.87 16.02 
+ activity exact match 23.21 81.60 41.05 68.29 18.58 85.06 
+ action exact match 86.62 19.01 81.81 30.49 87.87 16.02 
+ UI component exact match 15.86 88.15 40.30 68.55 9.51 93.24 
+ system state exact match 85.41 20.22 75.91 36.40 87.87 16.02 
LlamaTouch W/O fuzzy match 10.54 93.26 23.36 84.02 7.21 95.66 
+ screen-level fuzzy match 10.24 93.36 22.13 84.76 7.15 95.60 
+ textbox fuzzy match 8.97 94.83 18.69 88.69 6.45 96.43 

Table 9: The comparison of task completion rate categorized 
by task sources (i.e., from AITW and LlamaTouch generated 
tasks). 

Agent End-to-end TCR 
Overall AITW Generated 

Auto-UI 4.44 12.75 2.29 
AutoDroid 14.84 22.77 12.79 
AppAgent 10.91 21.57 8.14 
CoCo-Agent 4.47 12.75 2.31 

applications/tasks. Second, we categorize tasks according to their 
complexities, measured by the number of steps required to com-
plete a task in the ground-truth dataset. Tasks are further divided 
into three difficulty levels: easy (steps ≤ 4), medium (4 < steps ≤ 
8), and high (step > 8). 

Performance across datasets. Among the four evaluated agents, 
AutoUI and CoCo-Agent were previously trained on AITW. Auto-
Droid and AppAgent directly invoke GPT-4 and GPT-4V, respec-
tively. We separately show the end-to-end TCR of all agents on 
tasks in AITW and LlamaTouch’s generated tasks to demonstrate 
their performance generalization to new scenarios (i.e., new tasks 
and new applications). Results in Table 9 indicate that AutoDroid 
and AppAgent also achieve higher TCR in AITW tasks compared to 
LlamaTouch’s generated tasks. This is mainly attributed to the task 
complexity gap between the two datasets. AutoUI and CoCo-Agent 
achieve a 12.75% TCR on tasks in AITW. However, for generated 
tasks in LlamaTouch, both perform poorly, with only 2.29% and 
2.31% TCR, respectively. The TCR gap between datasets reveals 
their lack of capability to adapt to previously unseen tasks. Con-
sidering the vast number of real-world applications, mobile agents 
with strong generalization capabilities to unseen scenarios are more 
competitive. 

Performance under different task complexity. We catego-
rize tasks into three difficulty levels based on the number of steps 
required to complete them in the datasets. The results are shown in 
Table 10. Generally, mobile agents can better complete simple tasks 
that require fewer steps. There is a significant drop in TCR when 
task complexity increases. AutoDroid outperforms the other three 
agents for tasks at all difficulty levels. AppAgent achieves a TCR 
similar to AutoDroid across all tasks. We believe that the knowl-
edgeable GPT-4/4V can better interpret task descriptions in natural 
language and pixel-level or textual UI representations. Therefore, 
agents based on GPT-4/4V achieve high TCR. However, there is still 

Table 10: The comparison of task completion rate between 
mobile agents. Tasks are categorized into different difficulty levels 
according to the number of steps required to finish it in the ground-
truth dataset. 

Agent End-to-end TCR 
Overall Steps≤4 4<Steps≤8 Steps>8 

Auto-UI 4.44 4.95 4.19 4.82 
AutoDroid 14.84 27.00 12.94 7.32 
AppAgent 10.91 16.83 10.97 3.61 
CoCo-Agent 4.47 7.92 3.91 2.41 

considerable room for mobile agents to improve their capabilities 
in mobile UI task automation. 

6 LIMITATIONS OF LLAMATOUCH 
Supporting WebView-based apps. One limitation of LlamaTouch 
is that its evaluation process requires Android’s VH to empower 
approximate UI layout matching and accurate UI component match-
ing (§3.2). Some Android applications built with WebView [13] 
are unable to access their VH, preventing LlamaTouch from eval-
uating agent performance on these applications. However, only a 
minor number of applications are built with WebView, inspiring 
LlamaTouch’s solution in utilizing VH. When evaluating WebView-
based apps are required, more advantaged techniques, such as 
screen similarity detection [31, 32], OCR/model-powered screen 
element recognition [7, 33], should be incorporated to retrofit 
LlamaTouch. We will consider this in future work. 

Biases in identifying essential states. LlamaTouch requires 
human or other autonomous agents, e.g., GPT-4V, to identify and 
annotate essential states on predefined UI interaction traces. This 
process, however, could involve biases and leads to inaccuracy due 
to potentially limited knowledge in application execution and un-
seen circumstances. For example, given a task “Delete YouTube 
in the Google Play Store”, the predefined traces might explicitly 
navigate to the app page of “YouTube” and click the “Uninstall” 
button, which might be annotated as one essential state during task 
execution. However, they may ignore that this application might 
be not installed at all. In this case, there will be no explicit action of 
“clicking the uninstall button” while this task is still completed. Such 
biases might result in low accuracy in checking task completion 
rates. However, we think this limitation could be eliminated and 
refined by involving expert reviewing. Furthermore, for every sin-
gle task description, involving diverse essential states on different 
potential task execution paths could better enhance the robustness 
of LlamaTouch’s evaluation design. 

7 CONCLUSION 
In this work, we proposed LlamaTouch, the first testbed for evalu-
ating mobile agents with both faithfulness and scalability in mo-
bile UI task automation. LlamaTouch enables mobile agents to be 
tested on realistic mobile environments. At the evaluation stage, it 
matches the task execution traces with annotated essential states. 
LlamaTouch tolerates different task execution paths and dynamic 
execution environments, significantly reducing false negative re-
sults that occurred in previous evaluation approaches. It achieves 



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Zhang et al. 

high evaluation accuracy, which is comparable to human validation, 
while preserving the scalability of evaluating on static datasets. By 
conducting task execution to real-world mobile devices, we also 
reveal the limited capabilities of current mobile agents in mobile 
UI automation tasks. 

ACKNOWLEDGMENTS 
This work was supported by National Key R&D Program of China 
(No.2021ZD0113001), NSFC (No.62102045 and No.62272261), and 
China Institute of IoT (Wuxi). 

REFERENCES 
[1] 2017. XML Path Language (XPath) 3.1. https://www.w3.org/TR/xpath-31/. 
[2] 2018. Single activity: Why, when, and how (Android Dev Summit ’18). https: 

//www.youtube.com/watch?v=2k8x8V77CrU. 
[3] 2024. Activity | Android Developers. https://developer.android.com/reference/ 

android/app/Activity. 
[4] 2024. Android UIAutomator2. https://github.com/appium/appium-uiautomator2-

driver. 
[5] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal 
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 
(2023). 

[6] Apple. 2024. Siri - Apple. https://www.apple.com/siri/. 
[7] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif 

Seif El-Nasr. 2021. Vins: Visual search for mobile user interface design. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 
1–14. 

[8] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and 
Bryan A Plummer. 2022. A dataset for interactive vision-language navigation 
with unknown command feasibility. In European Conference on Computer Vision. 
Springer, 312–328. 

[9] Cheng-Han Chiang and Hung-yi Lee. 2023. Can Large Language Models Be an 
Alternative to Human Evaluations? arXiv preprint arXiv:2305.01937 (2023). 

[10] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, 
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset 
for building data-driven design applications. In Proceedings of the 30th annual 
ACM symposium on user interface software and technology. 845–854. 

[11] Shirin Feiz, Jason Wu, Xiaoyi Zhang, Amanda Swearngin, Titus Barik, and Jeffrey 
Nichols. 2022. Understanding screen relationships from screenshots of smart-
phone applications. In 27th International Conference on Intelligent User Interfaces. 
447–458. 

[12] Google. 2023. Run apps on the Android Emulator | Android Developers. https: 
//developer.android.com/studio/run/emulator. 

[13] Google. 2024. Build web apps in WebView. https://developer.android.com/ 
develop/ui/views/layout/webapps/webview. 

[14] Google. 2024. Google Assistant, your own personal Google. https://www.apple. 
com/siri/. 

[15] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui 
Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, et al. 2023. CogAgent: A 
Visual Language Model for GUI Agents. arXiv preprint arXiv:2312.08914 (2023). 

[16] Sunjae Lee, Junyoung Choi, Jungjae Lee, Hojun Choi, Steven Y Ko, Sangeun Oh, 
and Insik Shin. 2023. Explore, Select, Derive, and Recall: Augmenting LLM with 
Human-like Memory for Mobile Task Automation. arXiv preprint arXiv:2312.03003 
(2023). 

[17] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping 
language-image pre-training with frozen image encoders and large language 
models. arXiv preprint arXiv:2301.12597 (2023). 

[18] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping 
natural language instructions to mobile UI action sequences. arXiv preprint 
arXiv:2005.03776 (2020). 

[19] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, 
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al. 2024. Personal LLM Agents: 
Insights and Survey about the Capability, Efficiency and Security. arXiv preprint 
arXiv:2401.05459 (2024). 

[20] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruc-
tion Tuning. arXiv:2304.08485 [cs.CV] 

[21] Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024. Comprehensive Cognitive 
LLM Agent for Smartphone GUI Automation. arXiv preprint arXiv:2402.11941 
(2024). 

[22] OpenAI. 2023. GPT-4V(ision) system card. https://openai.com/research/gpt-4v-
system-card. 

[23] Lihang Pan, Bowen Wang, Chun Yu, Yuxuan Chen, Xiangyu Zhang, and Yuanchun 
Shi. 2023. AutoTask: Executing Arbitrary Voice Commands by Exploring and 
Learning from Mobile GUI. arXiv preprint arXiv:2312.16062 (2023). 

[24] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, 
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of 
transfer learning with a unified text-to-text transformer. The Journal of Machine 
Learning Research 21, 1 (2020), 5485–5551. 

[25] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lilli-
crap. 2023. Android in the wild: A large-scale dataset for android device control. 
arXiv preprint arXiv:2307.10088 (2023). 

[26] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. 2022. 
META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI. arXiv 
preprint arXiv:2205.11029 (2022). 

[27] Maryam Taeb, Amanda Swearngin, Eldon School, Ruijia Cheng, Yue Jiang, and Jef-
frey Nichols. 2023. AXNav: Replaying Accessibility Tests from Natural Language. 
arXiv preprint arXiv:2310.02424 (2023). 

[28] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia 
Glaese, Zafarali Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. 2021. 
Androidenv: A reinforcement learning platform for android. arXiv preprint 
arXiv:2105.13231 (2021). 

[29] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction with 
mobile ui using large language models. In Proceedings of the 2023 CHI Conference 
on Human Factors in Computing Systems. 1–17. 

[30] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, 
Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-
powered task automation in android. (2024), 543–557. 

[31] Jason Wu, Rebecca Krosnick, Eldon Schoop, Amanda Swearngin, Jeffrey P Bigham, 
and Jeffrey Nichols. 2023. Never-ending Learning of User Interfaces. In Proceed-
ings of the 36th Annual ACM Symposium on User Interface Software and Technology. 
1–13. 

[32] Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey P 
Bigham. 2023. WebUI: A Dataset for Enhancing Visual UI Understanding with 
Web Semantics. In Proceedings of the 2023 CHI Conference on Human Factors in 
Computing Systems. 1–14. 

[33] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen. 
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th 
ACM Joint Meeting on European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering. 1655–1659. 

[34] Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. 
2024. Understanding the Weakness of Large Language Model Agents within a 
Complex Android Environment. arXiv preprint arXiv:2402.06596 (2024). 

[35] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, 
Jianwei Yang, Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. 2023. GPT-
4V in Wonderland: Large Multimodal Models for Zero-Shot Smartphone GUI 
Navigation. arXiv preprint arXiv:2311.07562 (2023). 

[36] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and 
Gang Yu. 2023. AppAgent: Multimodal Agents as Smartphone Users. arXiv 
preprint arXiv:2312.13771 (2023). 

[37] Zhuosheng Zhan and Aston Zhang. 2023. You only look at screens: Multimodal 
chain-of-action agents. arXiv preprint arXiv:2309.11436 (2023). 

[38] Danyang Zhang, Lu Chen, and Kai Yu. 2023. Mobile-env: A universal platform 
for training and evaluation of mobile interaction. arXiv preprint arXiv:2305.08144 
(2023). 

[39] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, 
Xianyi Cheng, Yonatan Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena: 
A realistic web environment for building autonomous agents. arXiv preprint 
arXiv:2307.13854 (2023). 

https://www.w3.org/TR/xpath-31/
https://www.youtube.com/watch?v=2k8x8V77CrU
https://www.youtube.com/watch?v=2k8x8V77CrU
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://github.com/appium/appium-uiautomator2-driver
https://github.com/appium/appium-uiautomator2-driver
https://www.apple.com/siri/
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://developer.android.com/develop/ui/views/layout/webapps/webview
https://www.apple.com/siri/
https://www.apple.com/siri/
https://arxiv.org/abs/2304.08485
https://openai.com/research/gpt-4v-system-card
https://openai.com/research/gpt-4v-system-card


LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 

A APPENDIX 

A.1 APIs Provided by AgentEnv 
LlamaTouch provides three categories of APIs for mobile agent integration and UI automation task execution. APIs, parameters, and their 
return values are listed in Table 11. 

Table 11: APIs provided by LlamaTouch to mobile agents for UI automation task execution on real mobile devices. 

API Category API Parameter Return Value 
Metadata query get_task_instruction None str: A task description in natural language. 

UI state query 
get_screenshot None 

str: A base64 encoded string 
representing the current screenshot. 

get_view_hierarchy None 
str: A string representing the 
textual view hierarchy in XML. 

Action space 

post_task_complete None None 
post_task_impossible None None 
post_press_home None None 
post_press_back None None 

post_click 
x, y: Normalized x/y coordinates for a 
targeted screen position. None 

post_type str: The text to be input. None 

post_swipe 

touch_x, touch_y: Normalized x/y 
coordinates where the swipe begins. 
lift_x, lift_y: Normalized x and y 
coordinates where the swipe ends. 
duration: The interval of the swipe gesture. 

None 


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Agents for Mobile UI Task Automation
	2.2 Mobile UI Task Automation Benchmarks

	3 LlamaTouch Design
	3.1 On-device Mobile UI Task Execution
	3.2 Essential Application State Annotation
	3.3 Faithful and Scalable Task Evaluation

	4 LlamaTouch Dataset
	4.1 Dataset Construction
	4.2 Dataset Statistics

	5 Evaluation
	5.1 Experiment Setup
	5.2 Metrics
	5.3 Task Completion Rate and Accuracy
	5.4 Ablation Study
	5.5 Absolute Capabilities of Mobile Agents

	6 Limitations of LlamaTouch
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 APIs Provided by AgentEnv




