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Deep learning models have been deployed to a wide range of edge devices. Since the data distribution on edge devices may

differ from the cloud where the model was trained, it is typically desirable to customize the model for each edge device to

improve accuracy. However, such customization is hard because collecting data from edge devices is usually prohibited due

to privacy concerns. In this paper, we propose PMC, a privacy-preservingmodel customization framework to effectively

customize a CNN model from the cloud to edge devices without collecting raw data. Instead, we introduce a method to extract

statistical information from the edge, which contains adequate domain-related knowledge for model customization. PMC uses

Gaussian distribution parameters to describe the edge data distribution, reweights the cloud data based on the parameters,

and uses the reweighted data to train a specialized model for the edge device. During this process, differential privacy can

be enforced by adding computed noises to the Gaussian parameters. Experiments on public datasets show that PMC can

improve model accuracy by a large margin through customization. Finally, a study on user-generated data demonstrates the

effectiveness of PMC in real-world settings.
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1 INTRODUCTION
Convolutional neural networks (CNNs) have made remarkable progress in a wide range of computer vision tasks,

such as image classification [17, 21, 46], object detection [12, 28] and media interpretation [9, 52]. Recently, it

becomes increasingly attractive to deploy cloud-trained CNN models to edge devices, to protect user privacy

and reduce inference latency. For example, Liu et al. [30] proposed to deploy deep learning (DL) models to

smart cameras for real-time video surveillance. Hochsteler et al. [19] proposed to use deep learning in embedded

vehicular systems. Many smartphone manufacturers and app developers have also started using on-device deep

learning techniques to provide low-latency and privacy-preserved services [3, 54].

The deep learning models typically need to be customized before deploying to edge devices, in order to

address the following two challenges: resource constraints and data shift. First, edge devices have inherent resource
constraints, i.e. the computing power and memory space of edge devices are usually limited, thus the model

size should be reduced to satisfy the specific constraints on edge devices. Model compression has become the

most common solution to address this challenge. Typical model compression methods include weight pruning

[16], filter pruning [25, 37], quantization [60, 61], and knowledge distillation [18, 22], etc. Second, the data shift
challenge refers to the situation where the training data (in the cloud) is statistically different from the deployment

environment (the edge device), which may lead to significant accuracy decrease. Domain adaptation techniques

[31, 49] are designed to address this type of issue, which typically requires joint-training on data from the source

domain and target domain. In our case, it means that the cloud must collect raw data from the edge device to

train a specialized model.

Unfortunately, collecting data from edge devices is usually difficult and undesirable due to privacy concerns.

Specifically, the raw data in edge devices may contain confidential user information and cannot be uploaded to

the cloud. Thus, existing domain adaptation techniques that require raw data from edge devices cannot be applied.

As a result, only model compression techniques can be applied in most of these model deployment processes. As

the same edge-independent model is deployed to different edge devices, it results in inevitable accuracy loss.

To address this issue, we propose PMC, a novel cloud-to-edge model deployment framework to achieve

privacy-preserving model customization. Instead of collecting raw data from the edge device, we require the edge

device to upload only privacy-insensitive statistics. Then we simulate an edge dataset in the cloud by reweighting

training samples based on the collected statistics. By utilizing the reweighted data in the model compression and

retraining process, we generate a new model with a smaller size and higher accuracy on the target edge device.

PMC faces several key challenges. The first challenge is how to characterize the data distribution on the edge

device with a small set of statistics, given the fact that the edge dataset typically contains a set of unlabelled images.

Second, how can we guarantee the privacy of uploaded statistics, i.e. make sure no private user information

can be inferred from the statistics? Third, how do we use the statistics in the cloud to customize the model?

Specifically, how can we generate accurate models for different edge devices based on these statistics?

PMC addresses the first challenge mainly based on the following insight: By feeding a dataset into a CNN,
the activation values of its intermediate channels usually convey information about the data distribution in the
dataset, which can be roughly modeled with Gaussian distributions. This phenomenon enables us to infer edge data

distribution based on only a few statistics (Gaussian distribution parameters) collected from a CNN running on

the edge device.

We further adopt differential privacy techniques to provide rigorous privacy guarantee. The reason is that

although the statistics are already much less sensitive as compared to the raw data, they can still be exploited to

reveal sensitive user information in some cases [45]. Specifically, we introduce the concept of property-based
adjacent datasets, where two datasets differ on an arbitrary privacy property. By using the Laplace mechanism

[44] that obfuscates the statistics by adding random noises drawn from a Laplace distribution, we can make it

difficult to distinguish adjacent datasets (i.e. infer privacy properties) based on the statistics. The noise intensity is
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controlled by the privacy budget ϵ . By default, our framework uses ϵ = 5 (close to those used by large companies

like Apple and Google), which offers strong privacy protection without sacrificing the effectiveness of the

statistics.

To address the third challenge, we introduce a data reweighting scheme to generate a new dataset from the

cloud dataset based on the collected edge statistics. The samples that are more statistically similar to the edge

data are assigned higher weights and have a higher chance to be selected into the new dataset. The generated

dataset can be regarded as a simulation of the edge data distribution. By pruning the cloud model based on the

reweighted dataset, we can generate a compressed model with higher accuracy for the edge device.

To summarize, our approach includes the following four main steps: (1) Extracting statistics that can represent

the edge data distribution, using a partial model deployed to the edge device. (2) Adding noises to the statistics

to provide formal privacy guarantee, while keeping the statistics effective in representing data distribution. (3)

Reweighting cloud data based on the privacy-preserving statistics extracted from the edge to generate a dataset

that simulates the data distribution on the edge device. (4) Retraining the model based on the simulated edge

dataset to generate a customized model for final edge deployment.

We evaluate PMC on simulated cloud-to-edge deployment scenarios, as it is hard to conduct experiments in real-

world applications. We simulated each scenario by crafting a large cloud dataset and several small edge datasets

using public-available datasets [42, 51, 56]. The edge datasets have different data distributions for simulating the

real-world situations where the edge devices differ from each other in camera models, running environments,

applications, etc. The results show that PMC outperforms traditional compression-based deployment pipelines and

other personalization methods by up to 6.33% and 4.00%, respectively, while offering formal privacy guarantees.

To validate the effectiveness of our approach in real-world scenarios, we further conducted a study based on a

dataset collected from 27 users. We asked each of our users to take several photos in different scenes (indoor,

outdoor, portrait). The personally identifiable information (PII) in the photos was blurred to protect privacy. Since

these images were not labelled and did not have any downstream applications, we could not compute the model

customization accuracy as on the large-scale public datasets. Instead, we examined whether the activation values

extracted from intermediate channels can be used to distinguish different scenes and different users, which is the

theoretical basis of our approach. The results validated the effectiveness of the extracted activation values in

describing edge data distribution, which indicates that our approach is also applicable in real-world cloud-to-edge

deployment scenarios.

This paper makes the following key research contributions:

• We propose the idea of performing model customization without requiring uploading private user data

from the edge. Instead of relying on raw data, we can use only data distribution statistics from the edge to

perform efficient model customization. The distribution itself can be further protected by adding noises

through differential privacy.

• Based on the idea, we design and implement a novel framework, named PMC, to achieve privacy-preserving

cloud-to-edge model customization for CNNs. Using only distribution statistics from the edge data, PMC

can effectively customize the cloud model for different edge devices by simultaneously adapting the model

architecture and weights.

• We conduct extensive experiments based on public datasets and state-of-the-art model architectures. The

results demonstrate the effectiveness of PMC in cloud-to-edge model customization. We also perform a

user study on real-world data collected from 27 users, which demonstrates the effectiveness of our method

in real-world settings.
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2 BACKGROUND AND MOTIVATION

2.1 Convolutional Neural Networks
Convolutional neural network (CNN) is first introduced by LeCun et al. in 1998 [23]. Recently it has been widely

used for image processing, classification, segmentation, etc.
Typically, a modern CNN (e.g. ResNet [17]) is organized in layers, including convolutional (Conv) layers, batch

normalization (BN) layers, pooling layers, activation functions and fully connected (FC) layers, each of which

represents a unique type of mathematical operations. Among them, the Conv layer is the core building block

of a CNN. Its parameters consist of a set of learnable filters (or kernels) that employ a mathematical operation

(called convolution) to capture local information. The input and output of a Conv layer are called feature maps

(except the first Conv layer whose input is the image). A feature map has size H×W×C, where H, W, C are the

height, weight, and the number of channels in the feature map. Each channel typically captures a unique feature,

although not interpretable to humans. These terms (layer, filter, channel, etc.) will be used to explain our approach

in the following sections.

2.2 Cloud-to-edge Model Deployment
Deploying cloud-trained deep learning models to edge devices is increasingly popular for edge computing

scenarios in recent years. There are mainly two aspects to consider during the deployment: latency and accuracy.

Model compression techniques, such as weight pruning and filter pruning [15, 25], can be used to reduce model

inference latency on edge devices. As for the accuracy aspect, the issue is mainly about the statistical distribution

difference between the cloud data and the edge data. Domain adaptation [31, 49] is the most relevant technique

proposed to address such data shift issue.

However, existing domain adaptation techniques are not applicable in the cloud-to-edge deployment scenario,

because it requires joint-training on cloud data and edge data, which is typically unacceptable due to privacy

concerns. This paper aims to address this issue, i.e. how can we adapt the cloud-trained model to the edge devices
without compromising privacy? The problem can be formulated as follows:

Definition 1. (Cloud-to-edge model customization) Suppose Dcloud and Dedдe are two datasets in the cloud
and the edge device, respectively, and Mcloud is a CNN model trained on Dcloud . The goal of cloud-to-edge model
customization is to generate a customized modelMedдe based on Dcloud , Dedдe andMcloud specifically for Dedдe .

As compared with the domain adaptation problem that is widely discussed in the AI community [31, 49], we

make the following three assumptions for the cloud-to-edge model customization problem:

(1) The dataset in the source domain (Dcloud ) is large and has a mixture distribution, which contains some

samples with the same distribution as the target domain (Dedдe ). This assumption is intuitive since the

cloud would usually collect large-scale data from various sources.

(2) The customization process cannot utilize any sensitive information from Dedдe due to privacy concerns.

Here, sensitive information refers to any privacy property that may appear in the samples in Dedдe (more

formal definition in Section 3.3).

(3) Usually, the customized model Medдe should be smaller than Mcloud due to the resource constraints on

edge devices.

3 THE PMC FRAMEWORK
This paper proposes PMC, a privacy-preserving approach to the cloud-to-edge model customization problem

defined in Definition 1. In this section, we first give an overview of the PMC framework and then describe each

of the core components in detail.
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Fig. 1. Comparison of the traditional cloud-to-edge model deployment process and our deployment process. In the traditional
process, the same compressed model is deployed to different edge devices with different data distributions (here the color
represents the distribution), leading to potential loss of accuracy. Our method generates a customized model for each edge
device based on privacy-preserving statistics extracted from the edge device, which can achieve higher accuracy.

3.1 Overview
Figure 1 presents the comparison between the traditional cloud-to-edge model deployment process and the

PMC-enabled deployment process.

As illustrated in Figure 1(a), the traditional model deployment procedure mainly involves three steps, including

(1) training the model with the data collected from various sources in the cloud, (2) compressing the cloud-trained

model, and (3) deploying the compressed model to each edge device. The data distributions of different edge

devices (represented with different colors) are not taken into consideration in the traditional deployment process.

As a result, the models deployed to different devices are the same. Since the compressed model was trained based

on the cloud data, it may not fit well on the edge data, which may come with a different data distribution. This

will result in potential accuracy loss when the same model is deployed to different edge devices.

Taking the data distribution difference and privacy requirement into consideration, the workflow of our PMC

framework (Figure 1(b)) includes the following steps. In Step 1, we train the model on the cloud as the traditional

method does. Then the cloud-trained model is partially pre-deployed according to the resource limitation of a

certain edge device (Step 2). In Step 3, we use the pre-deployed model to extract statistics (represented as Gaussian

distribution parameters) that corresponds to the edge data distribution. To provide a rigorous privacy guarantee,

we adopt differential privacy techniques and add computed noise to the extracted statistics before uploading them

to the cloud (Step 4 and Step 5). In Step 6, we customize the cloud model by (1) generating a new edge-specific

dataset by reweighting the cloud data with the uploaded statistics and (2) compressing and retraining the model

using the new dataset. Finally, in Step 7, we deploy the customized model to the edge device. As compared with

the model generated with traditional deployment pipeline, our model is expected to achieve higher accuracy,

since the weights and structures of our model are tailored for the edge data distribution.
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Specifically, we first design a statistics extraction function f (Dedдe ) for describing the edge data distribution
and then process it to compute f ′(Dedдe ) with privacy guarantee. Then we upload the results generated with

f ′(Dedдe ) to the cloud and utilize them to compute a weightw(x) for each sample x in Dcloud , such that we can

generate a new dataset D ′
cloud by sampling the cloud dataset based on the weight of each sample. With the new

dataset, we finally compress and fine-tune the original modelMcloud to get the customized modelMedдe . In the

following sections, we will explain these steps in more detail.

3.2 Extracting Statistics
The goal of statistics extraction is to represent the edge data distribution with statistical data, such that we do

not need to upload the raw edge data, which may contain user privacy. Because the cloud typically has a large

dataset that can potentially cover the features in edge datasets, we may be able to reconstruct a dataset based on

its distribution and simulate the respective dataset on each edge device. This is the key observation that leads to

our proposed framework that can realize model customization without directly using the raw edge data.

Furthermore, as the distribution itself can still reveal critical user privacy, ideally we need to further protect

the distribution as well. One reason for us to use the statistics to represent data distribution is that the statistics

include only a few parameters (e.g. Gaussian distributions), which will be much easier to protect with techniques

such as differential privacy.

Another key challenge remaining is how to estimate the distribution of edge data. Because we do not assume

any prior knowledge about the edge and possible data distributions, we are unable to calculate the distribution

straightforwardly (e.g. building a classifier to predict the distribution category). In fact, in many cases, the data

distribution is hard to be explicitly described. To solve this issue, we resort to an indirect measurement method,

which examines the activation values of a channel produced by feeding edge samples as inputs. Since a Conv

filter in a CNN may capture a certain type of feature in the input sample (e.g. a filter’s corresponding channel

may be activated if the input image has a dark background), the pattern of the activation values of a channel

produced by feeding a set of samples into the model may reflect an aspect of the overall data distribution of the

dataset (e.g. whether the dataset mainly contains dark-background images). Thus, the question becomes how to

statistically summarize the activation values of a channel produced by a dataset.

To start, we first describe how to compute the activation value of a channel produced by a single sample. Let

O(x) ∈ RC×H×W
be the feature map extracted from a convolutional layer given input x ∈ Dedдe . For a channel c

in the feature map, the channel activation value is the mean of all values in the channel, which can be computed

using a global average pooling operation:

zc (x) =
1

H ×W

H∑
m=1

W∑
n=1

Oc,m,n(x) (1)

In order to examine whether and how such channel-wise activation values can be used to estimate domain-

specific data distributions, we inspect the activation values of two arbitrary channels for three sub-datasets

belonging to two domains in the Office-Home [51] dataset. For each datasetD and channel c , we plot the histogram
of zc (x) for all samples in D, as shown in Figure 2. We highlight two observations according to the figure. First,

the datasets belonging to the same domain (Product_1 and Product_2) show similar histograms while datasets

from different domains (Art and Product) show the discrepancy, which indicates that the channel activation

values convey domain-specific data distribution information. Second, the activation values of a channel for a

dataset can be roughly modeled as a Gaussian distribution, meaning that we can represent them with the mean µ
and variance σ of the Gaussian distribution. Specifically:

µc (D) =
∑

x ∈D zc (x)
|D |
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channel	1 channel	2

Fig. 2. Histograms of two randomly selected channels for three sub-datasets from the Office-Home dataset. Product_1 and
Product_2 are two subsets of the Product domain. Art is another domain with a different distribution.

σc (D) =
∑

x ∈D (zc (x) − µc (D))2
|D |

Since a channel only describes a small aspect of the dataset, we usually need to use multiple channels to model

the overall data distribution more precisely. Thus, we select k channels C = c1, c2, ..., ck from a convolutional

layer’s feature map and extract their corresponding Gaussian distribution parameters

µ(D) = {µc1 (D), µc2 (D), ..., µck (D)}

σ (D) = {σc1 (D),σc2 (D), ...,σck (D)}
as the representation of the dataset D. The selection of the layer and the channels will be discussed later in

Section 4.6.

Combining µ(D) and σ (D) together, we obtain the statistical information extracted from the edge device to

describe the edge data distribution. Formally, the statistics extraction function can be defined as follows:

Definition 2. (Statistics extraction function) Given a dataset D, the function to extract information from D
to estimate D’s distribution is given by:

f (D) = {µ(D)}
⋃

{σ (D)} (2)

For the edge dataset Dedдe , f (Dedдe ) ∈ R2k can be utilized by the cloud to customize the model. In practice,

to compute f (Dedдe ), we first pre-deploy the original cloud-trained model to the edge device and compute the

statistics by feeding data samples into the model. Since we do not care about the model prediction accuracy in

this step, the pre-deployed model can be a partial model that only contains the necessary channels (and their

preceding layers), in order to save computation cost on the edge device. How to select channels for statistics

extraction will be elaborated in Section 4.6.

3.3 Adding Noise for Differential Privacy
Directly uploading the edge-specific statistics (i.e. f (Dedдe )) to the cloud may still be problematic, since a curious

server or a malicious third party may try to exploit privacy properties from the uploaded data. For example, an

attacker may build a classifier to infer whether a certain person or object appears in the edge dataset [45]. Although

the statistical information is intuitively privacy-preserving as it evens out most of the sensitive information,

there is still a lack of rigorous or quantified privacy guarantees. Differential privacy is a common technique

to offer such formal privacy guarantees. It has been used by prior work [1] to avoid privacy leakage through
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gradients and learned parameters during training. In this paper, we also use differential privacy to prevent private

information on the edge device from being inferred through the collected statistics.

Differential privacy can promise a formal and quantified privacy guarantee with a flexible setting. The definition

of ϵ-differential privacy is described as follows:

Definition 3. (ϵ-differential privacy) Suppose A is a randomized algorithm that takes a dataset as input. The
algorithm A is said to provide ϵ-differential privacy if for any subset S ⊆ Ranдe(A) it holds:

Pr [A(D) ∈ S] ≤ eϵ ∗ Pr [A(D ′) ∈ S] (3)

in which D and D ′ are adjacent datasets that differ on a single element (e.g. the record of one person). A smaller value
of ϵ enforces a stronger privacy guarantee.

To enforce ϵ-differential privacy for a deterministic function д, a typical solution is to inject computed random

noise to д. For example, the Laplace mechanism [44] is given by

Theorem 1. (Laplace mechanism) Suppose function д with sensitivity ∆д = maxD,D′ ∥д(D) − д(D ′)∥1. A is
ϵ-differentially private if:

A(D) = д(D) + Lap(∆д/ϵ) (4)

where Lap(∆д/ϵ) ∈ RN is random noise drawn from a Laplace distribution centered at 0 with scale ∆д/ϵ .

In our setting, we want to enforce ϵ-differential privacy for the function f (D) defined in Definition 2, which

is used to extract statistics from an edge device. The formal privacy guarantee for f (D) is nontrivial because
there is no agreement on what exactly is private information on an edge device. For example, in an image dataset

collected with a smart camera, most people would believe each individual’s face is private, while some may say a

car license plate that frequently appears in the scene is sensitive information, too.

Privacy property definition. In PMC, we leave the flexibility of defining privacy properties to the edge

device owner. Specifically, the edge device owner can manually make a list of privacy properties P = {p1,p2, ...}.
The properties can be informal, such as “Alice’s face”, “car license 1234”, etc, as long as the edge owner can count

or estimate how many data samples in the edge dataset contain each property.

Based on the privacy properties, we further refine the definition of adjacent databases in our setting:

Definition 4. (Property-based adjacent datasets). Given a privacy property p, Dp is the set of all samples in
D that contain property p. D − Dp is obtained by excluding all samples in Dp from D. We say D and D − Dp are
adjacent on property p.

The goal of privacy protection is to disallow the cloud to infer privacy properties based on f (D), where D is

the edge dataset. In other words, the cloud should not be able to differentiate adjacent datasets D and D − Dp
based on the uploaded information. According to Theorem 1, such a goal can be achieved by adding a computed

noise to f (D).

Theorem 2. Suppose D is the edge dataset and f is the function to extract information from D as in Definition 2,
ϵ-differential privacy is enforced if a random noise drawn from distribution Lap(∆̂f /ϵ) is added to each value in
f (D) before uploading to the cloud, where

∆̂f = max

p∈P

|Dp |
|D | ∗

∑
ci ∈C

{∆zci (D) + ∆zci (D)2} (5)

|D | and |Dp | are the total numbers of samples in D and Dp . ∆zci (D) = zmax
ci (D) − zmin

ci (D) is the range of channel
ci ’s descriptor (as in Equation 1) across all samples in D.
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Proving Theorem 2 is equivalent to proving that ∆̂f given by Equation 5 is an upper bound of f ’s sensitivity
∆f = max

p∈P
∥ f (D) − f (D − Dp )∥1. We include the proof in the appendix.

Such mechanism is easy for edge device owners to apply based on their privacy requirements. First, the

edge device owners need to prepare a dataset D to compute the statistics. They can optionally remove sensitive

information from D to reduce privacy risks in the first place. Then the edge device owner needs to compute

the Laplace distribution parameter ∆̂f based on their definition of privacy properties. Fortunately, according

to Equation 5, they only need to estimate an upper bound of maxp∈P |Dp |, which can be done by counting the

number of data samples in D that contain a common privacy property. For example, if the edge device is a street

camera that promises not to reveal individual car information, then the presence of each car would be a privacy

property, and maxp∈P |Dp | is the maximum number of images in D with the same car in it. Similarly, maxp∈P |Dp |
is the maximum number of samples provided by a single user if the edge data is collected from many end-users.

By default, we use maxp∈P |Dp | = 1 where each data sample is considered private while any two samples in D do

not share common private properties, which is also the most common assumption in existing research [1] and

products [2]. The final step is to calculate f (D) and ∆̂f by feeding each sample x ∈ D to the model once and

decide the privacy budget ϵ (e.g. Apple and Google set ϵ to 2-8 in their products [2, 62]). For the edge dataset

Dedдe , the information uploaded to the cloud is

f ′(Dedдe ) = f (Dedдe ) + Lap(∆̂f /ϵ) (6)

3.4 Customizing the Cloud Model
In this subsection, we customize the cloud model based on the uploaded statistics (f ′(Dedдe )). The customization

process includes a data reweighting step and a customizing step.

Data reweighting. We utilize f ′(Dedдe ) to reweight each sample in the cloud to simulate the edge data

distribution. Our solution is inspired by Sugiyama et al. [47] who used reweighting to address the covariate shift
problem caused by different distributions. Specifically, we compute a weight score for each sample x ∈ Dcloud :

w(x) =
pedдe (x)
pcloud (x)

(7)

where pedдe (x) and pcloud (x) represent the probability density of the edge and cloud datasets, respectively.w(x)
is higher if x conforms better to the edge data distribution. Unlike most existing reweighting schemes that devote

to accurately estimate probability densities based on the raw data, we directly use the channel-wise Gaussian

distribution whose probability density function is defined as

p(x ; µ,σ ) = 1

√
2πσ

exp(−(x − µ)2
2σ 2

) (8)

Note that the cloud now already has the Gaussian distribution parameters uploaded from the edge device

(i.e. f ′(Dedдe ) = {µ ′(Dedдe )}
⋃{σ ′(Dedдe )}. We can then calculate the parameters of the same set of channels

C = c1, c2, ..., ck for the cloud dataset (i.e. µ(Dcloud ) and σ (Dcloud )), following the same process in Section 3.2.

Based on these parameters, the cloud is able to compute the weight of each sample x according to Equations 7

and 8:

w(x) =
∏

ci ∈C p(x ; µ ′ci (Dedдe ),σ ′
ci (Dedдe ))∏

ci ∈C p(x ; µci (Dcloud ),σci (Dcloud ))
(9)

Finally, we generate a new dataset D ′
cloud by sampling data from the original cloud dataset according to the

weight of each sample. The generated dataset would have similar data distribution to the edge device data.
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Table 1. Detailed descriptions of the public datasets used in our experiment. The cloud dataset is simulated as the mixture of
80% of each subset, and the rest 20% of each subset is regarded as an edge dataset.

Dataset Simulated scenario #Classes #Samples Subset names & abbreviations

Office-31 different cameras 31 4,652

Amazon (A), DSLR (D),

Webcam (W)

ImageCLEF_DA different environments 12 1,800

Caltech-256 (C), ImageNet ILSVRC2012 (I),

Pascal VOC 2012 (P)

Office-Home different applications 65 15,500

Artistic images(Ar), Clipart images(Cl),

Product images(Pr), Real-World images(Rw)

Customization. To customize the model based on the simulated dataset D ′
cloud , we usually need to compress

the model. As explained earlier, model compression is important to fit the model to resource-constrained edge

devices. Filter pruning is a popular model compression technique, which mainly aims to prune the less-useful

filters to reduce model size. Here the importance can be measured by simply calculating the filter’s absolute

weight sum [25] or approximating the change in the cost function with Taylor expansion [37]. In PMC, we use

the Taylor-based method [37] but modify it to utilize our simulated dataset D ′
cloud instead of the original cloud

dataset Dcloud . This step can be omitted if the model does not need to be compressed.

Besides pruning, a fine-tuning step is further conducted to retrain the model in order to achieve good prediction

performance for each edge. Here we also use the new dataset D ′
cloud to fine-tune the original/pruned model.

Finally, we obtain a customized modelMedдe that is tailored for the edge deployment.

Note that we will not delve into more details on the pruning and fine-tuning steps in this paper, because these

are relatively standard procedures taken in techniques such as domain adaptation. Interested readers can refer to

related work for more information.

4 EVALUATION
We evaluated our approach by primarily looking at the following aspects:

(1) What is the accuracy of the customized model generated with our techniques? How does it compare with

conventional methods? (§4.2, §4.3)

(2) How is the applicability of PMC? Specifically, what is the performance of PMC on some alternative

scenarios? (§4.4)

(3) How do different privacy budgets affect the customized model’s accuracy? (§4.5)

(4) How do different statistics extraction strategies affect the effectiveness of the extracted statistics in repre-

senting data distributions? (§4.6)

(5) Is the technique applicable and effective on real-world data from end-users? (§4.7)

4.1 Experiment Setup
It was hard to conduct experiments in real-world cloud-to-edge deployment scenarios, as we did not have access

to any such applications. Thus, our experiments were mainly conducted on simulated scenarios based on public

and collected datasets.

Simulated cloud and edge datasets. We selected three public datasets, including Office-31 [42], Image-

CLEF_DA [56] and Office-Home [51], to simulate three cloud-to-edge deployment scenarios. The datasets were

initially used to evaluate visual domain adaptation methods [31, 49], which address a similar problem as ours,
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while having several different assumptions (as explained in Section 2.2). Each of the three datasets contains

several (3 or 4) sub-datasets belonging to different domains. In our case, we assume the cloud dataset is large and

has a mixture data distribution, and each edge dataset is relatively small and has a specific data distribution. Thus,

we separate each sub-dataset into two parts: 80% for cloud and 20% for edge. The cloud dataset is constructed

with all the cloud parts of the sub-datasets, and each edge part represents an edge dataset.

For example, Office-31 contains 4,652 images belonging to three subsets, including Amazon (A), DSLR (D), and

Webcam (W), which correspond to online website images, digital SLR camera photos, and web camera photos

respectively. Each image in the dataset is labeled with one of 31 office environment categories. Since the three

subsets are mainly differentiated by the camera models, we can use this dataset to simulate the scenario where

the edge devices have different camera models (the scenario is named different cameras for short). Specifically,
we split each subset (e.g. the Amazon subset A) to a cloud part (e.g. Acl ) and an edge part (e.g. Aed ). The cloud

dataset is combined with Acl , Dcl , andWcl and named as ADWcl . Each of Aed , Ded andWed represents a dataset

from an edge device.

Similarly, we used the ImageCLEF_DA dataset to simulate a scenario of different environments, where each
edge device is placed in a unique environment. The Office-Home dataset is used to simulate different applications
scenario, where each edge device may use the model to process different types of images. The detailed descriptions

of the datasets can be found in Table 1.

User-generated dataset.We also created a real-world dataset using images collected from users. The purpose

of this dataset is to examine whether our approach is effective in real-world scenarios. To create the dataset, we

recruited 27 volunteers (mainly college students) and asked them to take several photos that simulate different

edge device scenarios. Specifically, each of them was asked to take three indoor photos in their homes, three

outdoor photos in their neighborhoods, and three portraits of themselves. Users had been carefully informed

about the purpose of the study and the privacy risk, and they had the freedom to blur any sensitive information

in the images (faces, numbers, etc.) and opt-out. The images were stored in secure storage and were only used

internally. In the end, we obtained 243 photos (81 photos for each scene). We augmented the dataset by randomly

flipping, rotating, and adjusting brightness, to better simulate different camera angles and illumination conditions.

Models. We tested our customization method on three typical and widely-used model architectures: VGG-16

[46], ResNet-18 and ResNet-50 [17]. VGG-16 is a vanilla convolutional neural network with direct connections

across Conv layers. Since directly using VGG-16 on our task may lead to overfitting due to its intensive use

of fully connected layers, we modify the model by replacing the original fully connected layers with a global

average pooling layer. ResNet-18 and ResNet-50 are more complex models with many skip connections between

Conv layers. They are organized as several bottleneck blocks to reduce the number of parameters. For all models,

we used their pre-trained versions (i.e. trained with the ImageNet dataset [7]) before applying to the actual tasks

to accelerate training.

PMC implementation. Unless otherwise noted, our PMC implementation in the experiments was based on

the following configurations: in the statistics extraction phase, the statistics to describe edge data distribution

were computed from 50 randomly-selected channels in a layer between 50% to 75% depth in the models. Other

channel selection strategies will be discussed in Section 4.6. When adding noises to the statistics, the privacy

budget ϵ was set to 5, which is a relatively strong privacy guarantee according to Apple [2] and Google [62].

Detailed analysis of the trade-off between accuracy and privacy budget will be presented in Section 4.5. In the

model customization phase, all the experiments were conducted with the PyTorch [40] framework. The learning

rate was set to 0.001 in the fine-tuning process, where a momentum of 0.9 and a weight decay of 0.0005 were

adopted to accelerate convergence. We used different models on different datasets: VGG-16 on ImageCLEF_DA,

ResNet-18 on Office-31, and ResNet-50 on Office-Home.
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Table 2. The accuracy of the customized models generated by PMC and baseline methods on Office31 dataset. Here ADWcl
is the abbreviation of Acl + Dcl +Wcl , which represents the cloud data. Each of Aed , Ded , andWed represents the data
in a different edge device. PR is the pruning ratio. When PR is 0, it means the model doesn’t need to be compressed, and
the original model is compared as the baseline. Otherwise, the baselines are two state-of-the-art model pruning methods.
#Params represents the number of parameters in the compressed model.

PR Method ADWcl −Aed ADWcl − Ded ADWcl −Wed #Params

0%

Original 84.09% 94.78% 95.21% 11.18M

PMC 85.51% 97.98% 98.99% 11.18M

10%

L1-norm [25] 82.24% 96.39% 94.46% 10.23M

Taylor-based [37] 83.31% 95.58% 95.47% 9.99M

PMC 84.94% 97.59% 97.73% 10.01M

30%

L1-norm [25] 79.90% 91.97% 92.44% 7.91M

Taylor-based [37] 79.55% 92.98% 93.45% 7.60M

PMC 81.68% 93.98% 94.21% 7.62M

Baselines. Without PMC, developers would not be able to access user data due to privacy concerns, and

thus they can only use model compression techniques to generate models for edge devices. Thus, we used the

following two model pruning methods as the baseline methods:

• l1-norm pruning [25]. The l1-norm pruning method measures the importance score of each filter by

calculating its absolute weight sum. The filters with lower importance scores will be pruned. Note that this

method does not require any input data as the score is only related to the filter weights.

• Taylor-based pruning [37]. The Taylor-based pruning method measures the importance of each filter based

on its influence on the cost function estimated with Taylor expansion. In the process, the cloud data needs

to be fed into the model to calculate the feature map that is used to measure the filter importance.

State-of-the-arts.The state-of-the-artmethods includemobile personalization and domain transfer techniques.

We compare the following two state-of-the-art methods with our approach:

• AdaBN [27]. AdaBN achieves personalization/adaptation by changing the statistics of the BN layers in the

cloud-trained model only using local unlabeled data. This method does not need to upload any data and

can be regarded as a privacy-preserving mobile personalization method.

• AFN [56]. AFN is a state-of-the-art deep domain transfer method widely used in the area of domain

adaptation [38]. Note that domain transfer methods require both the source domain (cloud) data and

target domain (edge) data to implement joint training, thus we can consider AFN as an upper bound on

performance when ignoring privacy.

4.2 Accuracy of the Customized Models
The results achieved on the simulated datasets are shown in Table 2, Table 3, and Table 4. We highlight the

following key observations from the results:

Comparison with the original model.We first compare the accuracy between the model generated by PMC
and the original model trained with the cloud data (i.e. the PR=0% rows in the tables). PMC-generated models

outperformed the original models in all simulated scenarios by a large margin. Specifically, the improvement is

1.42~3.78% on the Office31 dataset, 3.00~4.33% on the ImageCLEF_DA dataset, and 1.14~2.68% on the Office-Home
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Table 3. The accuracy of the customized models generated by PMC and baseline methods on ImageCLEF_DA dataset.

PR Method PCIcl − Ped PCIcl −Ced PCIcl − Ied #Params

0%

Original 72.00% 91.67% 85.67% 14.72M

PMC 75.00% 95.00% 90.00% 14.72M

10%

L1-norm [25] 65.67% 88.33% 83.00% 12.36M

Taylor-based [37] 72.00% 90.33% 85.00% 11.61M

PMC 72.67% 92.00% 85.67% 11.63M

30%

L1-norm [25] 42.00% 69.33% 58.67% 8.51M

Taylor-based [37] 60.33% 83.00% 74.00% 8.57M

PMC 65.67% 87.00% 80.33% 8.83M

Table 4. The accuracy of the customized models generated by PMC and baseline methods on Office-Home dataset.

PR Method ACPRcl −Ared ACPRcl −Cled ACPRcl − Pred ACPRcl − Rwed #Params

0%

Original 75.46% 73.54% 89.18% 84.39% 23.51M

PMC 78.14% 75.83% 90.42% 85.53% 23.51M

10%

L1-norm [25] 72.58% 71.48% 86.81% 82.89% 20.78M

Taylor-based [37] 71.75% 71.82% 87.39% 82.66% 20.35M

PMC 75.05% 74.91% 89.63% 84.85% 20.35M

30%

L1-norm [25] 61.24% 68.27% 84.33% 75.89% 14.86M

Taylor-based [37] 60.00% 64.95% 83.09% 77.96% 14.52M

PMC 64.95% 71.02% 86.13% 80.83% 14.63M

dataset. The average improvement was 2.64%. The stable and significant accuracy improvement demonstrates

PMC’s effectiveness in adapting the cloud model to the edge data distribution.

Among the three datasets, the ImageCLEF_DA dataset achieved the highest accuracy improvement (3.00~4.33%).

This is because that the ImageCLEF_DA dataset collected data from different environments that may have

more diverse background features than others, which will harm the accuracy for the edge device in a specific

environment. Therefore, adapting data distribution on this dataset brought a more positive effect.

Accuracy achieved with pruning.We also considered the cases where filter pruning was used to generate

smaller models for the edge devices. The pruning ratio was set to 10% or 30% for all the methods. For each method,

we pruned the model and fine-tuned the pruned model with 20 epochs.

From the results, we can see that PMC achieved consistently higher accuracy than baselines for all models,

datasets, and pruning ratios, which means that our technique could effectively address the distribution mismatch

problem between the cloud data and edge data. Specifically, the performance of VGG-16 on ImageCLEF_DA

dataset was more significant. For example, on the 30% pruned version, PMC outperformed the l1-norm baseline by

17.67~23.67% and the Taylor-based baseline by 4~6.33%. We believe the low accuracy of the l1-norm method may

be due to the unsuitable pruning metric, which is more likely to prune the useful filters for edge data, especially

when the dataset (ImageCLEF_DA) has more diverse background features than others.

In some cases, the pruned models may even outperform the original models that have more parameters. For

example, almost all of the pruned models generated by PMC with the 10% pruning ratio performed better than
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Fig. 3. The accuracy achieved by PMC and other pruning methods with different pruning ratios.

the original cloud-trained model. For example, in the ADWcl − Ded task, the accuracy achieved by our pruned

model is higher than the original cloud-trained model by nearly 3%. Other pruning methods could also improve

accuracy, although the improvement is not as significant as ours. The reason might be that some filters that were

not useful for the edge dataset were pruned, which in turn led to higher accuracy.

Accuracy improvement for different pruning ratios. Another interesting observation is that the accuracy

improvement brought by PMC is related to the pruning ratio. For example, in the PCIcl − Ied customization task

in Table 3, PMC’s accuracy improvement as compared with L1-norm pruning is 21.66% for PR=30% and 2.67%

for PR=10%. To better inspect the relation between pruning ratio and accuracy improvement, we tested more

pruning ratios on the Office31 ADWcl −Aed customization task. The result is shown in Figure 3. We can notice

that the more filters pruned, higher the accuracy improvement PMC achieved as compared with other pruning

methods. Especially, when the pruning ratio was very high (90%), the traditional pruning methods performed

poorly (accuracy became lower than 50%), while our approach could remain a much higher accuracy (around

60%). This is because a smaller model usually has lower knowledge capacity, thus the training data generated by

PMC for the specific edge device becomes more important.

Analysis of the overall performance and the significant test. Based on aforementioned statistics, we

observe that the overall accuracy improvement in the unpruned original model is not much significant. However,

we would like to highlight that usually the original models need to be pruned before deployment on edge devices

due to their resource constraints. Thus, the pruned versions are more suitable to represent the performance of

PMC, which is obviously superior to other baselines, especially when pruning ratio is large (e.g. 90%, shown in

Figure 3).

In addition, we conducted a simple significant test to check whether the difference between the results of

two classifier (the original classifier and our customized classifier) over various datasets is non-random, which

is widely used in the machine learning field. Here we used Wilcoxon signed-ranks test [6] to implement the

significant test. The key idea is to compare the ranks for the positive and the negative differences and use them

to check whether the null-hypothesis can be rejected. In our scenarios, we observe that the accuracy of our

customized classifier outperforms the original one in all datasets, which means we do not introduce any negative

differences. Therefore, according to the principle of Wilcoxon signed-ranks test, the sum of negative rank is 0

and we can always reject the null-hypothesis, which indicates the significance of PMC.
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Table 5. The performance of PMC and other state-of-the-art methods on different datasets.

Dataset AdaBN [27] AFN [56] PMC(w/o DP) PMC

Office-31
ADWcl −Aed 84.52% 86.43% 85.44% 85.51%

ADWcl − Ded 95.98% 99.19% 97.59% 97.98%

ADWcl −Wed 96.47% 99.24% 98.99% 98.99%

ImageCLEF_DA
PCIcl − Ped 72.66% 76.67% 75.67% 75.00%

PCIcl −Ced 92.33% 95.33% 95.00% 95.00%

PCIcl − Ied 86.00% 91.67% 90.00% 90.00%

Office-Home

ACPRcl −Ared 75.88% 79.79% 78.14% 78.14%

ACPRcl −Cled 73.77% 77.43% 76.06% 75.83%

ACPRcl − Pred 89.18% 91.43% 90.98% 90.42%

ACPRcl − Rwed 84.62% 86.34% 85.53% 85.53%

4.3 Comparison with the State-of-the-art Methods
Here we compare the degree of privacy protection for different methods used in our evaluation. Specifically,

AdaBN can ensure user privacy as it only needs to conduct a model inference process on the edge device, without

any communication to outside. AFN needs to first upload the raw data to the cloud and then implement joint

training with cloud data and uploaded data, which obviously violates user privacy. However, while this method

will not be acceptable in our cloud-to-edge scenario, we believe AFN may act as an upper bound on performance

with non-privacy protection. Besides, we implement a version of PMC without adding noise for differential

privacy to examine the influence of the added noise.

Table 5 shows the performance of PMC and other state-of-the-art methods on different datasets. We can

observe that: (1) PMC outperforms AdaBN in all of the datasets by up to 4.00%, which validates the superiority

of the proposed approach in the context of privacy protection; (2) PMC can achieve comparable accuracy to

AFN, an upper bound domain adaptation method, which means that we do not sacrifice much performance

when taking privacy into consideration; (3) There is no significant accuracy gap to whether noises are added for

differential privacy. Furthermore, in some datasets (e.g. ADWcl − Ded ), PMC can exceed the non-noise version,

which indicates that the noise sometimes may eliminate bias existed in the statistics.

4.4 Applicability for Alternative Scenarios
We further conducted experiments to simulate some alternative scenario designs, aiming at further examining

the applicability of PMC. The designs mainly focus on the following two scenarios:

Customization for edge devices with labeled data. PMC is typically based on the assumption that data

are unlabeled on edge devices. In this scenario, we assume some labeling effort can be made to provide labeled

data for edge devices. Here we used the VGG-16 and ImageCLEF_DA dataset as an example. We partitioned the

dataset into three parts: cloud data (60%), edge training data (20%), and edge testing data (20%). Then several

different training schemes were taken to train the model: (1) Edge train only: we train the model with the edge

training data. (2) Cloud train+Edge fine-tune: we first train the model with cloud data and then fine-tune it with

edge training data. (3) Cloud train+PMC: we train the model with cloud data and use PMC to further adapt it. (4)
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Table 6. The accuracy of different training schemes on ImageCLEF_DA dataset.

Method PCIcl − Ped PCIcl −Ced PCIcl − Ied Edge Labeling

Edge train only 20.83% 20.83% 22.50% Required

Cloud train+Edge fine-tune 70.83% 95.83% 90.83% Required

Cloud train+PMC 70.83% 96.67% 92.50% Not required

Cloud train+PMC+Edge fine-tune 72.50% 97.50% 93.33% Required

Table 7. The accuracy of the original and customized model in the sub-class setting of ImageNet2012.

Sub-class Setting
of ImageNet2012

Selected Classes Unselected Classes

Original Customized Original Customized

1000 classes to 100 classes 77.42% 92.38% 79.82% 42.20%

1000 classes to 50 classes 75.04% 93.96% 79.82% 43.55%

1000 classes to 10 classes 73.60% 97.20% 79.64% 60.52%

Cloud train+PMC+Edge fine-tune: After the processing with PMC, we use the edge training data to fine-tune the

model.

Table 6 demonstrates the results of different training schemes. First, we can clearly see that edge train only
largely damages the training performance due to the overfitting problem [29]. Second, after the cloud train, PMC

performs better than edge fine-tune as well as saving labeling effort, which indicates PMC can effectively utilize

the specific knowledge in the cloud data and is more efficient. After customizing the model, developers can

further fine-tune it with edge training data if they seek to higher performance.

Customization for edge devices with sub-class data. Here we want to evaluate PMC in another common

scenario: sub-class customization. We start with the ImageNet2012 dataset (1000 classes) [7] and assume a

dozen of these classes need to be customized. Specifically, we randomly selected 500 samples from each class of

ImageNet2012 as the cloud data. For the edge device, we designed three settings: the edge data respectively owns

100, 50, and 10 classes of ImageNet2012 with 50 samples in each class. Note that the edge data should not have

any overlapping with the cloud data. Based on the settings, we used PMC to customize the model and evaluated

the performance on selected classes and unselected classes.

Table 7 summarizes the results achieved by the original and the customized model. We can observe the

following phenomenons: (1) For selected classes, our customized model exceeds the original model by a large

margin (over 10%), especially when the number of edge classes decreases, which validates the effectiveness of

PMC in the sub-class scenario. (2) The accuracy on unselected classes drops a lot when we conduct customization.

This is understandable since the goal of PMC is to adapt the model to be specific on the target selected data.

The performance on other unselected data is not important because it has no contribution to the edge-related

application.

4.5 Privacy Budget Analysis
PMC adds noise to the extracted statistics for stronger privacy guarantees. The intensity of the noise is controlled

by the privacy budget ϵ . The smaller ϵ is, the larger noises are added, which indicates stronger privacy. In most

of our experiments, ϵ is set to 5. However, developers may have different privacy budgets in practice [2, 62]. To

better understand the trade-off between the model accuracy and the privacy budget, we used different ϵ values
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Fig. 4. The trade-off between the customized model’s accuracy and the privacy budget (i.e. ϵ).

to generate the noise for the statistics and customize the cloud model. This experiment was conducted on the

Office-Home ACPRcl −Cled customization task, and the result is shown in Figure 4.

Based on the figure, we can draw following conclusions: First, a larger ϵ (weaker privacy guarantee) usually

leads to higher accuracy, which is intuitive since it introduces smaller noises to the edge distribution statistics.

Second, the accuracy improvement brought by increasing ϵ is not significant after ϵ is higher than 3, which

indicates that the effectiveness of our edge statistics will not be significantly reduced when the noise intensity

is below a threshold. Third, the model with a large pruning ratio is more sensitive to the privacy budget. For

example, when we increased ϵ from 1 to 3, the accuracy improvement for the 30% pruning ratio was 16.03%,

which was much higher than the 2.64% improvement for the model without pruning. These results can serve as a

reference for the application developers and edge device owners to decide the privacy budget ϵ when using PMC

for model customization. By default, it is recommended to set ϵ to 3~5 since it offers a strong privacy guarantee

with very small accuracy loss. In other cases where strict privacy guarantee is not required, developers can use a

very high ϵ , or even do not add any noise at all, to achieve the best accuracy.

In addition to the trade-off between privacy and effectiveness (accuracy), we would like to further highlight

that PMC is extremely efficient. We do not need to label the data or consume massive computation resource since

our approach only requires a model inference process with unlabeled user data to extract the statistics, which

makes it more applicable to many resource-constrained scenarios.

4.6 Fine-grained Analysis of Different Channel Selection Strategies
Extracting statistics to represent edge data distribution is a core step in PMC. In our current implementation,

statistics are extracted from 50 randomly selected channels in a Conv layer at the depth of 50% to 75%. However,

there are other options to select the channels. Thus, we conducted an in-depth analysis of the channel selection

strategies, in order to find the most effective channel selection strategy.

In this experiment, we assume that the goal of PMC was to customize a ResNet-18 model from the cloud with

data ACPRcl to the edge device with data Ared (constructed with the Office-Home dataset). PMC would select

several channels according to a certain strategy, extract statistics from the channels on the edge device, and

reweight cloud data with the statistics. The effectiveness of the selected channels can be measured as the ratio of

samples in Art domain selected from ACPRcl in the cloud.

Our analysis considered the several variations of four channel selection strategies, including select by type,
select by layer, select by value, and number of neurons. The results are shown in Figure 5 and explained as follows:
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(a)	Select	by	type (b)	Select	by	layer	depth

(c)	Select	by	value (d)	Number	of	neurons

Fig. 5. The effectiveness of different channel selection strategies. The Y-axis is the ratio of samples selected from each domain
using the statistics generated with the channels. The experiments were conducted on the Office-Home dataset with the
ResNet-18 model. The statistics were computed with theAred subset, and the effectiveness of each channel selection strategy
can be measured as the ratio of samples selected from the Ar domain. For example, in the first subfigure, selecting channels
from Conv layers is better than from other types of layers. Note that the ratios may be greater than 1 because the same
sample could be picked several times.

• Select by type. The channels can be selected from different types of layers, such as Conv, BN and ReLU. It is
obvious that the channels selected from Conv layers are the most effective, since they can lead to a much

higher ratio of samples in the Art domain selected in the cloud.

• Select by layer depth. The depth of layers to select channels from also matters. We split the layers into 4

equal ranges and found that the intermediate layers (50%~75% and 25%~50%) are more effective. This is

probably because the shallow layers are not good at capturing features from the inputs, while features

captured by deep layers are too relevant to the output labels. Instead, the features extracted by intermediate

layers are more relevant to the general data distribution.

• Select by value. Inside a layer, one could also select channels based on their activation values. For example,

we can select channels randomly, based on the variance of activation values, or based on the mean of

activation values. We found that selecting channels with higher mean activation values was effective.

However, we use the random selection strategy in our implementation because it is easier for the edge

devices to employ (no profiling needed) and can also effectively distinguish different data distributions.

• Number of neurons. We also analyzed the effectiveness of selecting different numbers of channels for

statistics extraction. We tested 10, 50, 100, and 200 channels and found that 50 channels were already

enough to precisely describe the edge data distribution. Surprisingly, when the number of channels was

larger (more than 200), the effectiveness of statistics decreased. The main reason is that the magnitude of

noises added for differential privacy is related to the number of uploaded statistics (see Equation 5). Too
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Fig. 6. The t-SNE visualization of statistics extracted for different scenes.

(a)	Portrait (b)	 Indoor (c)	Outdoor

Fig. 7. The t-SNE visualization of statistics extracted for different users. Here we randomly picked 6 users for simplicity.

many channels selected would require large noises and harm PMC effectiveness. This is also one of the

main reasons why we want to represent data distribution with a small number of statistics.

In summary, the best practice of channel selection in PMC is to select 50 to 100 channels from an intermediate

Conv layer randomly or based on the magnitude of mean activation values. We also tested on other models and

datasets and the conclusions were the same.

4.7 Study on User-generated Data
To further investigate the effectiveness of our approach in real-world settings, we conducted a qualitative

experiment on the user-generated dataset (described in §4.1). Since the images in the dataset were not labeled

and did not have any downstream applications, we could not evaluate the model customization performance as

we did for the large-scale public datasets. Instead, we examine whether the statistics extracted from intermediate

channels can effectively distinguish different domains (e.g. different scenes and different users), which is the

theoretical basis of PMC. Specifically, we used the ResNet-18 model pretrained with ImageNet dataset [7] to

extract statistics, and examined the effectiveness of the statistics by visualizing them with t-SNE [34]. If different

domains can be clearly distinguished in the visualization, it means the statistics are effective in representing the

data distribution knowledge, indicating PMC can effectively customize models based on such data.
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The visualizations are shown in Figure 6 and Figure 7. Specifically, Figure 6 shows that the statistics extracted

from each domain are clustered together. It means that PMC can be used to customize models to edge devices in

different scenes (indoor, outdoor, portrait). In Figure 7, different users’ images can be distinctly distinguished for

indoor and portrait scenes, while the outdoor images can not be perfectly clustered. The reason might be that the

outdoor images from each user are more arbitrary than in other scenes, and thus do not have a distinguishable

data distribution. However, we believe that PMC would be effective in most cloud-to-edge deployment scenarios

where each edge device has a unique data distribution.

5 RELATED WORK
This section presents a brief summary of existing literature related to our study.

5.1 Model Compression
Model compression has been proposed to reduce the size of a neural network by low-rank approximation [48, 57],

parameter quantization [60, 61], knowledge distillation [18, 22] and network pruning. Among them network

pruning has become a promising and widely applicable technique for accelerating and compressing CNNs, where

the redundant parts of a CNN can be easily removed without incurring significant performance drop. Specifically,

weight pruning [14–16, 58] and filter pruning [25, 29, 37] are two commonly used pruning techniques. For weight
pruning, Han et al. [16] proposed an iterative method to discard the small weights whose values are below the

predefined threshold. For filter pruning, Li et al. [25] measured the importance of each filter by calculating its

absolute weight sum. Molchanov et al. [37] proposed a global ranking method based on Taylor expansion that

approximated the change in the cost function induced by pruning network parameters.

Our customization method utilizes the filter pruning technique. However, we prune the model according to the

unique properties of each edge device rather than the whole cloud dataset, which can be regarded as a customized

pruning method.

5.2 Domain Adaptation
The goal of domain adaptation [38] is to overcome the shift across the source and target domains, which is usually

achieved by learning domain-invariant features. Common methods of domain adaptation can be approximately

divided into two categories. The first one is the discrepancy-based approach [31, 33, 50], utilizing different metric

learning schemes to diminish the domain shift. For example, Long et al. [31] learned transferable features by

minimizing the Maximum Mean Discrepancy (MMD) of their kernel embeddings. The second category is the

adversarial-based approach [10, 32, 49], where a domain discriminator is leveraged to encourage the domain

confusion by an adversarial objective. Inspired by the idea of adversarial learning, Ganin et al. [10] enabled
the network to learn domain invariant representations adversarially by adding a domain classifier and back-

propagating inverse gradients. Besides, multi-source domain adaptation [4, 20, 59], semi-supervised domain

adaptation [13, 43] have also been widely studied. Domain adaptation aims to find domain-invariant features,

rather than domain-specific features that are important in cloud-to-edge scenarios.

Moreover, existing domain adaptation techniques assume that the model developer can acquire data from both

source and target domain for implementing the adaptation, which is not realistic in cloud-to-edge adaptation

scenarios due to privacy concerns.

5.3 Privacy Protection for Edge, Mobile, and Deep Learning
Privacy protection is an important topic in mobile and edge computing, even before the emergence of on-device

deep learning applications, such as permission access control [41], local computation [26], differential privacy [8],

k-anonymity [24], etc. Many of the techniques and concepts are adopted to enhance privacy protection for deep
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learning applications today. For example, DeepType [55] proposed to use a on-device input method for next-word

prediction. MoRePriv [5] introduced a mobile service that can automatically mine the users’ interest based on

personal data. Differential privacy has also been used in various other deep learning applications. Abadi et al. [1]
provided a differentially-private gradient descent method for training CNN, where the gradient is clipped and

added noise to protect privacy. Papernot et al. [39] focused on private knowledge transfer where the student

was trained to predict an output generated by noisy voting among the teachers. Geyer et al. [11] introduced
differential privacy for federated learning systems, where edge devices collaborate to train a model without

exchanging their data. Our approach also uses different privacy techniques, but we address a different problem

- how to customize a model for an edge device with minimal privacy sacrifice and accuracy loss, which has

different settings and challenges as compared with prior work.

Besides, federated learning [35] and other decentralized algorithms were proposed to cope with the privacy

and personalization issue. For example, Wang et al. [53] designed an algorithm to determine the frequency of

global aggregation so that the available resource was most efficiently used. Meurisch et al. [36] introduced a new

decentralized and privacy-by-design platform (PrivAI) that enabled personalized AI services while preserving

user privacy. However, all of them need the labeled user data and local training in the edge/mobile end, which

may be infeasible in practice. Different from these methods, our approach only requires a model inference process

with unlabeled user data to extract the statistics, without labeling and massive computation (training) effort.

6 DISCUSSIONS
Trade-off between customization and privacy. In our work, we use differential privacy techniques to provide

formal privacy protection. However, there exists a trade-off here as stronger privacy guarantees (i.e., larger

noises) will degrade the customization performance to some extent. In the future, we will attempt to explore

other methods to ensure user privacy without affecting customization effectiveness.

Generalizability to other CNN models. PMC is only evaluated on VGG and ResNet models in this work.

While there are many new CNN architectures proposed in recent years, we believe our method can be generalized

to other CNN models, because the key idea of our approach, i.e. the statistics extracted from Conv channels can

encode domain-related features, is common across all CNN architectures.

Other deep learning tasks. Our approach is focused on CNNs that are commonly used in computer vision

tasks. However, there are other deep learning tasks that are based on other types of neural networks. For example,

natural language processing tasks are usually based on recurrent neural networks (RNNs). Our approach currently

cannot be applied to these models because they do not have Conv channels. We believe it is interesting to extend

our method to these domains by analyzing what types of neurons in RNNs can reflect domain-related knowledge.

Other model compression methods. Besides the filter pruning technique used in this paper, there are

many other model compression methods widely studied in the AI and edge computing fields, such as low-rank

approximation [48, 57], parameter quantization [60, 61], and knowledge distillation [18, 22]. In the future, we

will experiment with other compression methods to examine the performance of our approach.

Evaluation in real-world applications. Our current user study does not involve concrete performance

comparison with other baselines. This is because the collected images were not labeled and do not have any

downstream applications, which makes model training and customization unrealistic. Indeed, we agree that

comparing PMCwith other baselines in real-world settings is an important step to further evaluate PMC’s benefits

in practice. In our future work, we will look for ways to evaluate PMC for real-world applications.

7 CONCLUSION
In this paper, we have addressed the fundamental conflict between model customization and data privacy. We

have demonstrated our solution through PMC, a novel framework to customize a CNN model from cloud to
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edge with formal privacy guarantees. The key observation to motivate the framework is that the statistics

extracted from intermediate neurons can be used to represent domain-related knowledge. Inspired by this, we

present a set of techniques to achieve privacy-preserving model customization. Extensive simulation-based

experiments demonstrate the effectiveness of the PMC framework on various network architectures. Finally, a

study on real-world data from 27 users confirms the effectiveness of the extracted statistics in describing edge

data distributions, indicating that our method will also be effective in real-world settings.
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A PROOF OF THEOREM 2
Proving Theorem 2 is equivalent to proving that ∆̂f given by Equation 5 is an upper bound of f ’s sensitivity ∆f ,
i.e.

max

p∈P
∥ f (D) − f (D − Dp )∥1 ≤ max

p∈P

|Dp |
|D | ∗

∑
ci ∈C

{∆zci (D) + ∆zci (D)2} (10)

Let 1 denote ∥ f (D) − f (D − Dp )∥1 and D ′
denote D − Dp in Equation 10. According to Equation 2, f (D) =

{µ(D)}⋃{σ (D)}, thus

1 =∥µ(D) − µ(D ′)∥1 + ∥σ (D) − σ (D − D ′)∥1
=
∑
ci ∈C

|µci (D) − µci (D ′)| + |σci (D) − σci (D ′)| (11)
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According to the definition, µc (D) =
∑
x∈D zc (x )

|D | , thus

|µc (D) − µc (D ′)| =|
∑

x ∈D zc (x)
|D | −

∑
x ∈D′ zc (x)
|D ′ | |

≤|
∑

x ∈D′ zc (x) + |Dp |zmax
c

|D | −
∑

x ∈D′ zc (x) + |Dp |zmin
c

|D | |

=
|Dp |
|D | (z

max
c − zmin

c )

=
|Dp |
|D | ∆zc (D)

(12)

Similarly,

|σc (D) − σc (D ′)| =|
∑

x ∈D (zc (x) − µc )2

|D | −
∑

x ∈D′ (zc (x) − µc )2

|D ′ | |

≤|
∑

x ∈D′ (zc (x) − µc )2 + |Dp |(zmax
c − zmin

c )2

|D |

−
∑

x ∈D′ (zc (x) − µc )2

|D | |

=
|Dp |
|D | (z

max
c − zmin

c )2

=
|Dp |
|D | ∆zc (D)

2

(13)

Substituting Equation 12 and Equation 13 into Equation 11, then we have:

1 ≤
|Dp |
|D |

∑
ci ∈C

(zc (D) + zc (D)2) (14)

By substituting Equation 14 into Equation 10, then we can reach Equation 10. ■

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 4, Article 139. Publication date: December 2020.


	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Convolutional Neural Networks
	2.2 Cloud-to-edge Model Deployment

	3 The PMC framework
	3.1 Overview
	3.2 Extracting Statistics
	3.3 Adding Noise for Differential Privacy
	3.4 Customizing the Cloud Model

	4 Evaluation
	4.1 Experiment Setup
	4.2 Accuracy of the Customized Models
	4.3 Comparison with the State-of-the-art Methods
	4.4 Applicability for Alternative Scenarios
	4.5 Privacy Budget Analysis
	4.6 Fine-grained Analysis of Different Channel Selection Strategies
	4.7 Study on User-generated Data

	5 Related Work
	5.1 Model Compression
	5.2 Domain Adaptation
	5.3 Privacy Protection for Edge, Mobile, and Deep Learning

	6 Discussions
	7 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 2

